• Title/Summary/Keyword: high-resolution imagery

Search Result 461, Processing Time 0.031 seconds

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT 위성영상을 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.79-89
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen, The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

The generation of cloud drift winds and inter comparison with radiosonde data

  • Lee, Yong-Seob;Chung, Hyo-Sang;Ahn, Myeung-Hwan;Park, Eun-Jung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.135-139
    • /
    • 1999
  • Wind velocity is one of the primary variables for describing atmospheric state from GMS-5. And its accurate depiction is essential for operational weather forecasting and for initialization of NWP(Numerical Weather Prediction) models. The aim of this research is to incorporate imagery from other available spectral channels and examine the error characteristics of winds derived from these images. Multi spectral imagery from GMS-5 was used for this purpose and applied to Korean region with together BoM(Bureau of Meteorology). The derivation of wind velocity estimates from low and high resolution visible, split window infrared, and water vapor images, resulted in improvements in the amount and quality of wind data available for forecasting.

  • PDF

RADIOMETRIC RESTORATION OF SHADOW AREAS FROM KOMPSAT-2 IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Han, You-Kyung;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.371-374
    • /
    • 2008
  • In very high-spatial resolution remote sensing imagery, it is difficult to extract the feature information of various objects because of occlusion and shadows. Moreover, various and feeble information within shadows can be of use in GIS-based applications and remote sensing analysis. In this paper, we developed a radiometric restoration method for shadow areas using KOMPSAT-2 satellite image. After detecting the shadow, non-shadow pixels nearby are extracted using a morphological filter. An iterative linear regression method is applied to calculate the relationship between shadow and non-shadow pixels. The shadows are restored by the parameters of the linear regression algorithm. Tests show that recovery of shadowed areas by our method leads to improved image quality.

  • PDF

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT위성영상정보를 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Hwan;Lee, Yong-Woong;Park, Wan-Yong
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.121-142
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen. The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

Fit Evaluation of the Image Segmentation Modelling for DEM Generation of Satellite Image (위성영상의 DEM 생성을 위한 영상분할 모델링 방법의 적합도 평가)

  • 이효성;안기원;김용일
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.229-236
    • /
    • 2003
  • In this study, for efficient replacemen of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme Using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업관련 토지피복 분류기준 설정 연구)

  • 홍성민;정인균;김성준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.261-265
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat+ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Comparison of MODIS and VIIRS NDVI Characteristics on Corn and Soybean Cultivation Areas in Illinois (일리노이주 옥수수, 콩 재배지 MODIS와 VIIRS NDVI 특성 비교)

  • Kyungdo Lee;Sookgyeong Kim;Jae-Hyun Ryu;Hoyong Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1483-1490
    • /
    • 2023
  • We analyzed the potential for joint utilization of Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery Normalized Difference Vegetation Index (NDVI) in crop assessment, considering the aging of MODerate resolution Imaging Spectroradiometer (MODIS) satellites. Over 11 years from 2012 to 2022, we examined the characteristics of NDVI changes in corn and soybean cultivation areas in Illinois, USA. VIIRS and MODIS satellite imagery NDVI exhibited a high correlation coefficient of over 0.98. However, during periods of rapid crop growth or decline, VIIRS NDVI showed values approximately 0.12 to 0.14 higher than MODIS. Estimating crop anomaly classes based on NDVI, we observed similar trends in corn and soybean crop anomaly classes in 2018 and 2019. However, in 2022, there appeared to be a significant divergence in crop anomaly classes, suggesting the need for further investigation. The correlation coefficients between MODIS and VIIRS satellite imagery NDVI and corn and soybean yields were consistently high, exceeding 0.8, indicating the potential for quantity estimation using both MODIS and VIIRS satellite imagery. Specifically, for VIIRS NDVI, excluding the increasing trend in crop quantity estimation for soybeans enhanced the correlation, and compared to MODIS, it showed a consistently high correlation with quantity from approximately 16 days earlier, indicating the potential for early estimation.

A Digital Bathymetric Model combining Multi Beam Echo Sounder and Sidescan Sonar

  • Park, Jo-Seph;Kim, Hik-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.330-330
    • /
    • 2002
  • The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.

  • PDF