• Title/Summary/Keyword: high-purity

Search Result 1,288, Processing Time 0.037 seconds

DNA Yield and PCR Success Rate of the Establishment Time of Wood Annual Ring: A Case Study of Korean Red Pine (Pinus densiflora) (목재의 나이테 생성 시기에 따른 DNA 추출 수율 및 PCR 성공률: 소나무(Pinus densiflora) 목재의 사례)

  • So Hyeon Kim;Byeong-Ju Lee;Ji Young Ahn;Jei-Wan Lee;Hyun-Mi Lee;Soo Hyung Eo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.554-560
    • /
    • 2023
  • To prevent illegal timber distribution, DNA markers have been used to identify the species and origin. However, extracting high-quality DNA from timber is difficult because of its physical and chemical properties. In this study, we investigated whether the age of timber tissue influences the yield of DNA extraction and the success rate of polymerase chain reaction (PCR) to understand the relationship between the establishment time of the wood annual ring and the extracted DNA concentration (ng/μl), purity (A260/A280), and PCR success rate (%) from pinewood, a major Korean domestic species. According to the results, it was observed that as the distance from the cambium increased, indicating that the tissue was older, the concentration and purity of the extracted DNA decreased significantly. For the trnM-trnV (285 bp) and rpoC1 (298 bp) regions, the PCR success rate was 100%. However, for the rbcL (1.3 kb) region, the PCR success rate was 66.67%. Moreover, PCR amplification of the rbcL region failed at all points older than 30 years. Thus, it is deduced that as time passes, along with the decay of timber cells, DNA is degraded, leading to a decrease in DNA concentration, purity, and PCR success rate. The results of this study are expected to be beneficial for future applications, such as the species identification of timber, providing valuable insights and potential utilization in this field.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Increased Yield of High-Purity and Active Tetrameric Recombinant Human EC-SOD by Solid Phase Refolding

  • Ryu, Kang;Kim, Young-Hoon;Kim, Young-Hwa;Lee, Joon-Seok;Jeon, Byeong-Wook;Kim, Tae-Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1648-1654
    • /
    • 2008
  • Superoxide dismutase (SOD) removes damaging reactive oxygen species from the cellular environment by catalyzing the dismutation of two superoxide radicals to hydrogen peroxide and oxygen. Extracellular superoxide dismutase (EC-SOD) is a tetramer and is present in the extracellular space and to a lesser extent in the extracellular fluids. Increasing therapeutic applications for recombinant human extracellular superoxide dismutase (rEC-SOD) has broadened interest in optimizing methods for its purification, with a native conformation of tetramer. We describe a solid phase refolding procedure that combines immobilized metal affinity chromatography (IMAC) and gel filtration chromatography in the purification of rEC-SOD from Escherichia coli. The purified rEC-SOD tetramer from the $Ni^{2+}$-column chromatography is refolded in Tris buffer. This method yields greater than 90% of the tetramer form. Greater than 99% purity is achieved with further purification over a Superose 12PC 3.2/30 column to obtain the tetramer and specific activities as determined via DCFHDA assay. The improved yield of rEC-SOD in a simple chromatographic purification procedure promises to enhance the development and therapeutic application of this biologically potent molecule.

Development of Reuse Process Through Recovery and Refinement of Precursor for LED (LED용 precursor 재이용을 위한 회수 및 정제 공정 개발)

  • Yang, Jae Yeol;O, Byung Sung;Yoon, Jae Sik
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • The purpose of this research is to develop a process and a system to collect, purify and reuse the residual quantity of trimethylgallium, used as a raw material, upon GaN epitaxial growth for LED from a metal organic chemical vapor deposition(MOCVD) equipment. This research reviews whether TMGa collected from the process can be used through a chemical and structural characteristics evaluation. As a result of analyzing the purity using ICP-MS and ICP-AES, 7N high purity (99.99999%) of TMGa was obtained. According to checking the structural change of TMGa through NMR analysis, TMGa having pure $(CH_3)_3Ga$ structure was obtained without structural change. For reliability review of the collected TMGa, u-GaN was deposited using the MOCVD process and an structural, optical and electrical characteristics evaluation was conducted. As a result, it was found out that the reuse was possible.

Separation of High Purity Terbium Using Extraction Chromatography (추출 크로마토그래피를 이용한 고순도 테르븀의 분리)

  • Lee, Kwang-Pill;Park, Myoung-Jin;Park, Keung-Shik;Lee, Hueng-Lark;Piao, Zhexiu
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.370-374
    • /
    • 1999
  • Extraction chromatography was used to scarch optimum separation conditions of terbium. Stationary phase was 2-ethylhexyl-2-ethylhexyl phosphonic acid(HEH[EHP])levextrel (-100~+150 mesh), column size was ${\Phi}20{\times}530mm$ and kept constantly temperature at $50^{\circ}C$, adsorption flow rate of $0.2mL/cm^2{\cdot}min$, elution flow rate of $1.0mL/cm^2{\cdot}min$, column diameter to packing height of 1:15. But to search optimum separation conditions of terbium, it changed the eluent acidity, the loading weight of sample. the composition of sample. In conclusion, acidity was 0.6 N HCl, loading weight of sample was about 5% and composition of sample was $Gd_2O_3(20%)+Tb_4O_7(60%)+Dy_2O_3(20%)$. Moreover purity of separated terbium by ICP-AES analysis was 99.98% in yield of 99.99%.

  • PDF

High Purity Hydrogen Generator for Fuel Cell Vehicles (연료전지 자동차 탑재형 고순도 수소생산장치)

  • Han, Jaesung;Lee, Seok-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.4
    • /
    • pp.277-285
    • /
    • 2001
  • We developed a compact, 10 kWe, purifier-integrated reformer which supplies hydrogen for fuel cell vehicles. Our proprietary technologies regarding hydrogen purification by palladium alloy membrane and catalytic combustion by noble metal coated wire-mesh catalyst were combined with the conventional methanol steam reforming technology, resulting in higher conversion, excellent quality of product hydrogen, and better thermal efficiency than any other systems. In this system, steam reforming, hydrogen purification, and catalytic combustion take place all in a single reactor so that the whole system is compact and easy to operate. The module produces $8.2Nm^3/hr$ of 99.999% or higher purity hydrogen with CO impurity less than 10 ppm, which is equivalent to 10 kWe when PEMFC has 45 % efficiency. Thermal efficiency of the module is 81 % and the power density of the module is 1.6 L/kWe. As the results of experiments, cold-start time has been measured about 20 minutes. Response time of hydrogen production to the change of the feed rate has been within 1 minutes.

  • PDF

Preparation of Silica Sol by Partial Hydrolysis of TEOS and High Purity Silica Glass Fiber (TEOS의 부분가수분해에 의한 실리카 졸의 합성과 유리섬유 제조)

  • Yang, Hyun S.;Kwon, Oh H.;Lee, Jae D.;Rho, Jae S.;Kim, Young H.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.823-831
    • /
    • 1996
  • At the ratio [$H_2O$]/[TEOS]=1.7, the silica sol was synthesized by partial hydrolysis in the presence of acid catalyst. After stabilizing the silica sol by trimethylsilylation, the molecular weight and viscosity of the sol obtained at various reaction times were examined to determine a best spinnability of the sol. Gel fibers were prepared from the sol solution after removing solvent in the solution, and the gel fibers were heated at $1,000^{\circ}C$. The prepared silica fibers were in the shape of circular cross-section and their tensile strength and $SiO_2$ purity were $83{\pm}20kg/mm^2$ and about 99.997%, respectively.

  • PDF

Isolation and Characterization of Mitochondrial DNA from Arehicityars and Metacitrus (Archicitrus와 Metacitrus로부터 Mitochondrial DNA의 분리 및 특성)

  • 이숙영;박민희
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.4
    • /
    • pp.307-317
    • /
    • 1995
  • The purity of mtDNAs isolated from Archicitrus and Metacitrus leaves was higher in percoll density gradient centrifugation than differential and sucrose density gradient centrifugation. The most clear mtDNAs were obtained from mitochondria included in the Interface band of between 21% and 45% under isomotic, low viscosity conditions in the three step discontinuous percoll density gradient centrifugation. DNase treatment to the crude mitochondrlal suspension still more increased purity of mtDNA by the effective removal of the nuclear and chloroplast DNA and mtDNAs were appeared as a single band at middle position of tube by EtBr /cscl density gradient centrifugation. Agarose gel electrophoresis of mtDNAs resolved a single, broad band containing high molecular weight DNAs In all preparation. Yield of mtDNAs was about 110 and 2 ug Per 2009 in mature and immature leaves respectively. The mtDNA fragment patterns showed by EcoR I treatment were indistinguishable with respect to nom bet and position of bands in Archicitrus and Metacitrus. In the pattern of Hind E restriction, the Metacitrus displayed the unique band between 5.0 and 4.0kb, in addition to four fragments about 5.0, 2.4, 2.15, and 2.0kb, respectively, different from Archicitrus. Also the pattern of total mtDNAs fragment by the treatment of Pst I showed that the distinguishable fragment pat tern was not appeared in Archicitrus(C. iyo Tanaka), but about 6.0, 5.5, 5.0 and 2.Bkb fragments were appeared only in Metacitrus(C. junos Sieb). Therefore it was indicated that two species in intra-subgenus were identical each other, whereas considerable difference was revealed for inter-subgenus.

  • PDF

A Study on the N2O Separation Process from Crude N2O (Crude N2O로부터 정제된 N2O 분리공정에 관한 연구)

  • Cho, Jungho;Lee, Taekhong;Park, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.

Effects of impurities on transformation of quartz to cristobalite (Quartz에서 cristobalite로의 전이에 미치는 미량성분의 영향)

  • Jin Kim;Jeong-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.315-324
    • /
    • 1994
  • The effects of impurities of the quartz raw materials on the trasformation of quartz to cristobalite were investigated. As the increase of impurities content, the amount of cristobalite crystal increased, whereas the fusion temperature of quartz and the formation temperature of cristobalite decreased. And the courses of the transformation of quartz to cristobalite were examined. The course of quartz $\rightarrow$ transitional noncrystalline phase $\rightarrow$ melt (T) and quartz $\rightarrow$ transitional noncrystalline phase $\rightarrow$ cristobalite $\rightarrow$ melt (C) were always coexisted on the transformation of quartz. In the case of high purity quartz raw material, the T course was predominant, while in low purity quartz raw material, the C course was predominant. And the calculated density of heat treated sand by the quantitative analysis of quartz and cristobalite phase by XRD is well agreed with the measured density by pycnometer. On the melting proces of quartz glass, the volume expansion of sand at a certain temperature can be estimated with the calculated density data.

  • PDF