• Title/Summary/Keyword: high-pressure

Search Result 13,872, Processing Time 0.034 seconds

Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater (충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구)

  • Kim, Hyung-Joon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

A Study on Development of Shutoff Operating System of Ultra-High Pressure Positive Displacement Pump (초고압 용적형 펌프의 체절운전시스템 개발에 관한 연구)

  • Min, Se-Hong;Kim, Ho-Chul;Sung, Gi-Chan
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Ultra-high pressure positive displacement pump can discharge high pressure water with mass volume, which depends on periodic changes in volume that made by rotation motor. Its high efficiency of discharge is one of the most strong point of positive displacement pump. Due to its simple system structure, it can be miniaturized and lightened. Positive displacement pump can discharge high pressure with stable flow rate, irrespective of pressure fluctuate. This is the reason that positive displacement pump was used instead of centrifugal pump. In this study, shutoff operating system was developed for positive displacement pump to secure safety of high pressure operate. This shutoff system contains controller system, electronic clutch, and relief valve, and each part is mutual supplementation. Speed test was carried out in order to check operation of controller program and electronic clutch and fluid flow, venting experiment of the relief valve. It was confirmed that segment system of ultra-high pressure positive displacement pump is operated.

High-pressure Injection Injuries in the Hand (수부의 고압 분사 손상)

  • Kim, Seong-Ki;Roh, Si-Gyun;Lee, Nae-Ho;Yang, Kyung-Moo
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.245-249
    • /
    • 2010
  • Purpose: High-pressure injection injury is caused by accidental injection of the high-pressure injection devices in industry. The initial benign appearance of the wound fools patients into delays in an adequate treatment. And it can result in disastrous outcomes such as necrosis and amputation. To avoid the poor prognosis, the injuries require a prompt surgical intervention. The purpose of this article is to recognize the poor outcome of the highpressure injection injury and to introduce an adequate treatment in need. Methods: We have 4 cases of the high-pressure injection injuries in the hand from April, 2005 to March, 2009. Average age is 39 years (30 - 49 years old), 2 cases are the palm of dominant hand, 1 case is the thumb of dominant hand, and 1 case is the palm of non-dominant hand, respectively. We followed up these patients for 20 months on average. In 3 cases, the immediate, aggressive surgical intervention was carried out, but the other one was delayed in early adequate treatment. The wounds were covered by local advancement flap, anterolateral thigh free flap, conservative treatment with antibiotics and dressing. Results: No pathogens after culture were found nor any findings of fracture in imaging study. Conservative treatment, local advancement flap and anterolateral thigh free flap for the open wound resulted in a desirable aesthetic outcome. In a long-term follow up, functional capability of the patient was also satisfactory. Conclusion: Upon initial evaluation, most high-pressure injection injuries present as innocuous wounds with very few symptoms and result in delaying the proper management. And the majority of high-pressure injection injuries will produce significant morbidity to the hand, amputation. And the initial aggressive surgical debridement was needed to prevent the poor outcome. The key to success in treating high-pressure injection injuries of the hand is the prompt aggressive surgical intervention.

A Study on Free Spray Patterns of Diesel with Ultra High Pressure (극초고압 디젤 자유분무의 분무양상에 관한 연구)

  • Jeong Daeyong;Lee Jongtai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.131-137
    • /
    • 2005
  • Ultra high pressure injection equipment was developed to estimate and analyze the spray characteristics in ultra high pressure injection. Spray patterns were visualized by schlieren method and analyzed in ultra high pressure. Spray tip penetration, spray thickness, spray volume, and entrained air mass increased with the increase of the injection pressure. But over 2,800 bars of the injection pressure region, it was shown that the rate of improvement was not increased remarkably ,and the spray characteristics such as spray penetration, volume, and entrained air mass were reversed and got worse at 4,140 bars.

Effect of Shockwave on Diesel Spray Characteristics in Ultra High Pressure Injection (극초고압 디젤분무의 충격파가 디젤분무특성에 미치는 영향)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.10-16
    • /
    • 2005
  • To investigate the effect of shockwave on diesel spray characteristics under ultra high pressure injection, the velocity of spray tip and shock wave were investigated using the visualization of spray by schlieren method. Spray characteristics such as the spray radius, height, and droplets size were analyzed. It is found in this study that shock wave, produced by ultra high injection pressure, propagates faster than spray tip. Spray radius of right side of nozzle tip was shorter than that of left side and spray height of right side of nozzle tip was thicker than that of left side. Droplets sue was increased at 414MPa in injection pressure because of pressure gradient between inner and outer of tile spray caused by shockwave.

  • PDF

High Temperature Vaporization of the High Melting Point Oxides (고융점 산화물에 대한 고온 증발)

  • 이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1978
  • The vapor pressure of the high melting point oxides, MgO, $Cr_2O_3$, and $MgCr_2O_4$ were measured over the temperature range 1300 to 175$0^{\circ}C$ under vacuum <$10^{-5}$ torr by the Langmuir and the Knudsen method. The Langmuir vapor pressure was increased with elevating temperature and with increasing porosity of the specimen. The difference between the vapor preseures measured by the Langmuir and the Knudsen method was decreased with elevating temperature and the Langmuir vapor pressure finally reached the Knudsen vapor pressure at the melting point when extrapolated. The vapor pressure of other important oxides with high melting points, i.e., $Al_2O_3$, $ThO_2$, $Yb_2O_3$ and $Y_2O_3$ were cited from the references. The Langmuir and the Knudsen vapor pressure of these oxides also showed the same results, i.e., they showed the same value at their melting points.

  • PDF

A Study on Quenching Characteristics of a High Pressure Gas Quenching System (고압가스 냉각시스템의 특성 연구)

  • Kim, Han-Seok;An, Guk-Yeong;Lee, Sang-Min;Jang, Byeong-Rok
    • 연구논문집
    • /
    • s.34
    • /
    • pp.11-19
    • /
    • 2004
  • An Experimental study on the characteristics of high pressure gas quenching system was carried out in the present study. The characteristics of gas quenching system have been studied with high pressure gas chamber and specimen for various gas pressure and velocity which are the design parameter of quenching system. The quenching gas was used compressed air which properties are very similar with Nitrogen gas usually used in industrial gas quenching system. The result shows that the quenching rate of mid surface of specimen is lower than each ends of them which are close to low temperature quenching surface. And to increases the quenching intensity, the increment of quenching gas pressure is more efficient than the increment of quenching gas velocity at the point of reducing the circulation fan power.

  • PDF

Pretest analysis of a prestressed concrete containment 1:3.2 scale model under thermal-pressure coupling conditions

  • Qingyu Yang;Jiachuan Yan;Feng Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2069-2087
    • /
    • 2023
  • In nuclear power plant (NPP) accidents, the containment is subject to high temperatures and high internal pressures, which may further trigger serious chain accidents such as core meltdown and hydrogen explosion, resulting in a significantly higher accident level. Therefore, studying the mechanical performance of a containment under high temperature and high internal pressure is relevant to the safety of NPPs. Based on similarity principles, the 1:3.2 scale model of a prestressed concrete containment vessel (PCCV) of a NPP was designed. The loading method, which considers the thermal-pressure coupling conditions, was used. The mechanical response of the PCCV was investigated with a simultaneous increase in internal pressure and temperature, and the failure mechanism of the PCCV under thermal-pressure coupling conditions was revealed.

An Investigation on a Spray Characteristics of Oxygenated Fuel with a Piezo Injector Common Rail System (피에조 인젝터 커먼레일 시스템을 이용한 함산소연료의 분무특성에 관한 연구)

  • Lee, Sejun;Yang, Jiwong;Kim, Sangill;Lim, Ocktaeck
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.171-177
    • /
    • 2012
  • To understand oxygenated fuel characteristics including spray penetration length and spray angle at a real engine ambient pressure condition, DME was injected into a high pressure chamber by a piezo injector common rail system. The piezo injector common rail system was able to apply steady injection pressure, rapid response, and accurate injection quantity. Injection and ambient pressure were varied to confirm a relation with spray form. Using a direct photographing technique, development process of DME spray was captured. DME injection quantity was enlarged linearly as increasing of the injection pressure. In the high pressure chamber, when the injection pressure was enlarged the penetration length and velocity were increased due to a big momentum of fuel particle at the same ambient pressure. When ambient pressure was increased, the DME spray penetration length and velocity were decreased since the high ambient density of nitrogen was acted as a resistance. Although the ambient pressure and injection pressure were varied, each case of spray angle was almost same since the spray angle had a connection of the injector nozzle geometry.

Optimum Design Method for Pressure-reducing System using High-pressure Gas (고압가스감압시스템 최적화 설계기법)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.748-751
    • /
    • 2010
  • To launch rocket on launch pad, propellants and gases are charged into the rocket by remote control system. Using pneumatic pressure-reducing regulators, kinds of gases with various pressure levels are supplied into launch pad. As most of operations for launching the vehicle are remotely controled in the launch control room, pressure pulsations due to rapidly gas supply at the upstream of regulators can make the required operating pressure range missed and cause damage to the regulators. In this paper, the optimum design methods of pressure regulators of pressure-reducing system on launch pad using high-pressure gases were investigated to solve the aforementioned problems and for stable gas supply to launch pad.

  • PDF