• Title/Summary/Keyword: high-pier

Search Result 120, Processing Time 0.054 seconds

The Behaviors of Earthquake Monitoring System for Gyungbu High Speed Railroad on the Odaesan Earthquake (오대산지진 시 경부고속철도 지진감시시스템 거동)

  • Kim, Dae-Sang;Kim, Sung-Il;Choi, Su-Hyun;You, Won-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.537-540
    • /
    • 2008
  • This paper reviews the operation standards and manuals of earthquake monitoring system for Gyungbu high speed railroad. The domestic earthquake monitoring system detects the acceleration data at the locations of lower part of pier and deck of viaducts and bridges, not like foreign system to do the surface ground accelerations. For the purpose of evaluating the behaviors of the domestic earthquake monitoring system, measured acceleration data on the Odaesan earthquake at Iwon viaduct were analysed. The values of maximum acceleration level of the viaduct were increased from 0.0089g(EW component) of the lower part of pier to 0.014g(EW component) on the deck of the viaduct. And also the predominant periods and frequencies were analysed by the frequency domain analysis.

  • PDF

Seismic Behavior and Economic efficiency Analysis of Bridge for PSC I-Shaped Girder of isolated device (지진격리장치를 갖는 PSC I형 거더교량의 지진거동 특성 및 경제성 분석)

  • Shin, Yung-Seok;Park, Jang-Ho;Choi, Kwang-Soo;Hong, Soon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2008
  • The research so far has primarily analyzed efficiency improvement but in this research, it analyzes the characteristics of earthquake behavior, with changed pier heights, through ordinary and seismic analysis. For this, the kind of bridge bearing has been changed against PSC I-shaped bridge, which is mostly used in practice, and at all times earthquake analysis has been performed with through height of pier. Especially considering sectional power resulting from earthquake analysis, displacement of PSC I-shaped bridge bearing, diameter of pier pillar by earthquake load, and upper spare gap have been analyzed. In case of high-pear, seismic isolated device is decided as proper for cars' driving and for management of bridge since it decreases movement of upper structure, than elastic bearing, reducing size of elastic connect device, and it's been analyzed it is effective for improvement of fine view and economic efficiency reducing section of lower bridge structure. Finally, when design PSC I-shaped bridge bearing, for the proper structure and high-pier side, applying seismic isolated device through precise inner analysis is proper than applying equal elastic bearing.

Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loading Test (강합성교각의 내진성능평가 Part I : 준정적 반복재하실험)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.9-19
    • /
    • 2002
  • Steel piers and concrete-filled steel(CFS) piers, in spite of reasonable strength, high ductility, small section, and fast construction, have not been considered as one of alternatives to RC piers even in the highly populated urban area where aseismic safety, limited space and fast construction are indispensably required. This paper, the first of two companion papers for the seismic performance of steel and CFS piers, tests steel and CFS piers under quasi-static cyclic loading to estimate their ductility and strength. Additional details such as rebars and base ribs are added to increase the ductility of a concrete-filled steel pier with minimum additional cost. Also, simplified numerical analyses using nonlinear spring and shell elements are examined for the estimation of the ductility and strength of concrete-filled steel piers and a steel pier. The result shows that concrete-filled steel peirs have higher energy absorption, i.e., ductility and strength than those of steel pier and increasing bonding between in-filled concrete and lower diaphragm, and the improved details of stress concentrated region would be important for the ductility and strength of a pier. Numerical results show that simplified modeling with nonlinear springs and shells has potential to be effective modeling technique to estimate the seismic performance of a concrete-filled steel pier.

The Characteristics of Various Stress in Cohesionless Soil with the Rammed Aggregate Pier (짧은 쇄석다짐말뚝(RAP)이 설치된 사질토지반의 응력변화 특성)

  • Chun, Byung-Sik;Kim, Kyung-Min;Kim, Jun-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1108-1117
    • /
    • 2005
  • RAP(rammed aggregate pier) method which is intermediate foundation of deep and shallow foundation is used to improve the ground with high compaction energy. This method is widely spread around the world, but there are few examples and systemic researches for failure mechanism and bearing capacity of this method are not organized yet. In this paper, soil laboratory tests were carried out to evaluate the applicability of RAP method as the foundation of a structure. And the bearing capacity and the failure mechanism of RAP method were studied with respect to various relative densities(35%, 65%, 90%), diameters(45mm, 60mm) and lengths(20cm, 30cm, 40cm). As results, stress concentration ratio decreased as diameter of RAP was increasing or length of RAP was decreased or relative density was decreased. however these results were not always constant. because systematic interaction between relative density and diameter and length of RAP can affect stress concentration ratio, more studies on stress concentration ratio are needed throughout laboratory and field tests.

  • PDF

A framework for carrying out train safety evaluation and vibration analysis of a trussed-arch bridge subjected to vessel collision

  • Xia, Chaoyi;Zhang, Nan;Xia, He;Ma, Qin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.683-701
    • /
    • 2016
  • Safety is the prime concern for a high-speed railway bridge, especially when it is subjected to a collision. In this paper, an analysis framework for the dynamic responses of train-bridge systems under collision load is established. A multi-body dynamics model is employed to represent the moving vehicle, the modal decomposition method is adopted to describe the bridge structure, and the time history of a collision load is used as the external load on the train-bridge system. A (180+216+180) m continuous steel trussed-arch bridge is considered as an illustrative case study. With the vessel collision acting on the pier, the displacements and accelerations at the pier-top and the mid-span of the bridge are calculated when a CRH2 high-speed train running through the bridge, and the influence of bridge vibration on the running safety indices of the train, including derailment factors, offload factors and lateral wheel/rail forces, are analyzed. The results demonstrate that under the vessel collision load, the dynamic responses of the bridge are greatly enlarged, threatening the running safety of high-speed train on the bridge, which is affected by both the collision intensity and the train speed.

Study on safety early-warning model of bridge underwater pile foundations

  • Xue-feng Zhang;Chun-xia Song
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The health condition of of deep water high pile foundation is vital to the safe operation of bridges. However, pier foundations are vulnerable to damage in deep water due to exposure to sea torrents and corrosive environments over an extended period. In this paper, combined with aninvestigation and analysis of the typical damage characteristics of main pier group pile foundations, we study the safety monitoring and real-time early warning technology of the deep water high pile foundations, we propose an early warning index item and early warning threshold of deep water high pile foundation by utilizing a numerical simulation analysis and referring to domestic and foreign standards and literature. First, we combine the characteristics of structures and draw on more mature evaluation theories and experience in civil engineering-related fields such as dam and bridge engineering. Then, we establish a scheme consisting of a Early Warning Index Systemand evaluation model based on the analytic hierarchy process and constant weight evaluation method and apply the research results to a project based on the Jiashao bridge in Zhejiang province, China. Finally, we verify the rationality and reliability of the Early Warning Index Systemof the Deep Water High Pile Foundations.

Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques (통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑)

  • Kim, Byunghyun;Cho, Soojin
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF