• Title/Summary/Keyword: high-level controller

Search Result 278, Processing Time 0.026 seconds

Development of high performance universal contrller based on multiprocessor (다중처리기를 갖는 고성능 범용제어기의 개발과 여유자유도 로봇 제어에의 응용)

  • Park, J.Y.;Chang, P.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.227-235
    • /
    • 1993
  • In this paper, the development of a high performance flexible controller is described. The hardware of the controller, based on VME-bus, consists of four M68020 single-board computers (32-bit) with M68881 numerical coprocessors, two M68040 single board donputers, I/O devices (such as A/D and D/A converters, paraller I/O, encoder counters), and bus-to-bus adaptor. This software, written in C and based on X-window environment with Unix operating system, includes : text editor, compiler, downloader, and plotter running in a host computer for developing control program ; device drivers, scheduler, and mathemetical routines for the real time control purpose ; message passing, file server, source level debugger virtural terminal, etc. The hardware and software are structured so that the controller might have both flexibility and extensibility. In papallel to the controller, a three degrees of freedom kinematically redundant robot has been developed at the same time. The development of the same time. The development of the robot was undertaken in order to provide, on the one hand, a computationally intensive plant to which to apply the controller, and on the other hand a research tool in the field of kinematically redundant manipulator, which is, as such, an important area. By using the controller, dynamic control of the redundant manipulator was successfully experimented, showing the effectiveness and flexibility of the controller.

  • PDF

Tank Level Control using Fuzzy Inference Technique (퍼지추론기법을 이용한 탱크 레벨 제어)

  • Ji, Seok-Jun;Jeon, Pu-Chan;Park, Doo-Hwan;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.724-727
    • /
    • 1997
  • This paper describes a control method of tank level using Fuzzy Inference Technique. In General, to control tank level without a dangerous overflow and with a high accuracy is difficult because of high order time delay and nonlinearity. None the less, the hardware controller using 80586 Microprocessor with DT-2801 board in this paper was successfully implemented, through a series of simulations and experiments, the superiority of the proposed fuzzy controller ta a conventional PID one was investigated.

  • PDF

Multi-Modal Controller Usability for Smart TV Control

  • Yu, Jeongil;Kim, Seongmin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.517-528
    • /
    • 2013
  • Objective: The objective of this study was to suggest a multi-modal controller type for Smart TV Control. Background: Recently, many issues regarding the Smart TV are arising due to the rising complexity of features in a Smart TV. One of the specific issues involves what type of controller must be utilized in order to perform regulated tasks. This study examines the ongoing trend of the controller. Method: The selected participants had experiences with the Smart TV and were 20 to 30 years of age. A pre-survey determined the first independent variable of five tasks(Live TV, Record, Share, Web, App Store). The second independent variable was the type of controllers(Conventional, Mouse, Voice-Based Remote Controllers). The dependent variables were preference, task completion time, and error rate. The experiment consist a series of three experiments. The first experiment utilized a uni-modal Controller for tasks; the second experiment utilized a dual-modal Controller, while the third experiment utilized a triple-modal Controller. Results: The first experiment revealed that the uni-modal Controller (Conventional, Voice Controller) showed the best results for the Live TV task. The second experiment revealed that the dual-modal Controller(Conventional-Voice, Conventional-Mouse combinations) showed the best results for the Share, Web, App Store tasks. The third experiment revealed that the triple-modal Controller among all the level had not effective compared with dual-modal Controller. Conclusion: In order to control simple tasks in a smart TV, our results showed that a uni-modal Controller was more effective than a dual-modal controller. However, the control of complex tasks was better suited to the dual-modal Controller. User preference for a controller differs according the Smart TV functions. For instance, there was a high user preference for the uni-Controller for simple functions while high user preference appeared for Dual-Controllers when the task was complex. Additionally, in accordance with task characteristics, there was a high user preference for the Voice Controller for channel and volume adjustment. Furthermore, there was a high user preference for the Conventional Controller for menu selection. In situations where the user had to input text, the Voice Controller had the highest preference among users while the Mouse Type, Voice Controller had the highest user preference for performing a search or selecting items on the menu. Application: The results of this study may be utilized in the design of a controller which can effectively carry out the various tasks of the Smart TV.

Development of Longitudinal Algorithm to Improve Speed Control and Inter-vehicle Distance Control Acceptability (속도 제어와 차간거리 제어 수용성 개선을 위한 종방향 알고리즘 개발)

  • Kim, Jae-lee;Park, Man-bok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.73-82
    • /
    • 2022
  • Driver acceptance of autonomous driving is very important. The autonomous driving longitudinal controller, which is one of the factors affecting acceptability, consists of a high-level controller and a low-level controller. The host controller decides the cruise control and the space control according to the situation and creates the required target speed. The sub-controller performs control by creating an acceleration signal to follow the target speed. In this paper, we propose an algorithm to improve the inter-vehicle distance fluctuations that occur in the cruise control and space control switching problems in the host controller. The proposed method is to add an approach algorithm to the cruise control at the time of switching from cruise control to space control so that it is switched to space control at the correct switching distance. Through this, the error was improved from 12m error to 4m, and actual vehicle verification was performed.

Design of a 6-DOF Parallel Haptic Rand Controller Consisting of 5-Bar Linkages and Gimbal Mechanisms (5절링크와 짐벌기구로 구성된 병렬형 6자유도 햅틱 핸드컨트롤러의 설계)

  • Ryu, Dong-Seok;Sohn, Won-Sun;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • A haptic hand controller (HHC) operated by the user’s hand can receive information on position and orientation of the hand and display force and moment generated in the virtual environment to the hand. In this paper, a 3-DOF hand controller is first presented, in which all the actuators are mounted on the fixed base by combining a 5-bar linkage and a gimbal mechanism. The 6-DOF HHC is then designed by connecting these two 3-DOF devices through a handle which consists of a screw and nut. Analysis using performance index is carried out to determine the dimensions of the device. The HHC control system consists of the high-level controller for kinematic and static analysis and the low-level controller for position sensing and motor control. The HHC used as a user interface to control the mobile robot in the virtual environment is given as a simple application.

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

High-Accuracy Motion Control of Linear Synchronous Motor Using Reinforcement Learning (강화학습에 의한 선형동기 모터의 고정밀 제어)

  • Jeong, Seong-Hyen;Park, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1379-1387
    • /
    • 2011
  • A PID-feedforward controller and Robust Internal-loop Compensator (RIC) based on reinforcement learning using random variable sequences are provided to auto-tune parameters for each controller in the high-precision position control of PMLSM (Permanent Magnet Linear Synchronous Motor). Experiments prove the well-tuned controller could be reduced up to one-fifth level of tracking errors before learning by reinforcement learning. The RIC compared to the PID-feedforward controller showed approximately twice the performance in reducing tracking error and disturbance rejection.

Cluster Tool Module Communication Based on a High-level Fieldbus (고수준 필드버스 기반의 클러스터 툴 모듈 통신)

  • Lee Jin Hwan;Lee Tae Eok;Park Jeong Hyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.285-292
    • /
    • 2002
  • A cluster tool for semiconductor manufacturing is an integrated device that consists of several single wafer processing modules and a wafer transport module based on a robot. The distributed module controllers are integrated by an inter-module communication network and coordinated by a centralized controller, called a cluster tool controller (CTC). Since the CTC monitors and coordinates the distributed complex module controllers for advanced process control, complex commuication messaging and services between the CTC and the module controllers are required. A SEMI standard, CTMC(Cluster Tool Module Communication), specifies application-level communication service requirements for inter-module communication. We propose the use of high-level fieldbuses, for instance. PROFIBUS-FMS, for implementing CTMC since the high-level fieldbuses are well suited for complex real-time distributed manufacturing control applications. We present a way of implementing CTMC using PROFIBUS-FMS as the communication enabler. We first propose improvements of a key object of CTMC for material transfer and the part transfer protocol to meet the functional requirements of modem advanced cluster tools. We also discuss mapping objects and services of CTMC to PROFIBUS-FMS communication objects and services. Finally, we explain how to implement the mappings.

  • PDF

Using High Brightness LED Light Source Controller for Machine Vision (고휘도 LED를 이용한 머신비전용 조명광원 제어기 개발)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.311-318
    • /
    • 2014
  • This paper is to introduce a lighting source controller using high brightness LED to create a clear and reliable condition for an accurate measurement and testing, which is a core technology in clinical image system and mechanical automation system. This controller is designed to supply a stable power in a constant-current system by installing a high brightness LED driver, and to improve the reproducibility of brightness by using 32-bit ARM processor core, dividing brightness quantity into 256 levels, making the remote control and the external interface possible, and preventing and digitizing the brightness inaccuracy caused by errors of resistance values. This controller enables the lighting range to be wide and possible in a low lighting level compared to analog, adds the RS-485 communication function, and makes it for the users to control the on-off function and the dimming level by receiving date from an external device.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.