• Title/Summary/Keyword: high-intensity wind

Search Result 133, Processing Time 0.023 seconds

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

Wind tunnel modeling of roof pressure and turbulence effects on the TTU test building

  • Bienkiewicz, Bogusz;Ham, Hee J.
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.91-106
    • /
    • 2003
  • The paper presents the results of 1:50 geometrical scale laboratory modeling of wind-induced point pressure on the roof of the Texas Tech University (TTU) test building. The nominal (prevalent at the TTU site) wind and two bounding (low and high turbulence) flows were simulated in a boundary-layer wind tunnel at Colorado State University. The results showed significant increase in the pressure peak and standard deviation with an increase in the flow turbulence. It was concluded that the roof mid-plane pressure sensitivity to the turbulence intensity was the cause of the previously reported field-laboratory mismatch of the fluctuating pressure, for wind normal and $30^{\circ}$-off normal to the building ridge. In addition, it was concluded that the cornering wind mismatch in the roof corner/edge regions could not be solely attributed to the wind-azimuth-independent discrepancy between the turbulence intensity of the approach field and laboratory flows.

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

Typhoon wind hazard analysis using the decoupling approach

  • Hong, Xu;Li, Jie
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • Analyzing the typhoon wind hazards is crucial to determine the extreme wind load on engineering structures in the typhoon prone region. In essence, the typhoon hazard analysis is a high-dimensional problem with randomness arising from the typhoon genesis, environmental variables and the boundary layer wind field. This study suggests a dimension reduction approach by decoupling the original typhoon hazard analysis into two stages. At the first stage, the randomness of the typhoon genesis and environmental variables are propagated through the typhoon track model and intensity model into the randomness of the key typhoon parameters. At the second stage, the probability distribution information of the key typhoon parameters, combined with the randomness of the boundary layer wind field, could be used to estimate the extreme wind hazard. The Chinese southeast coastline is taken as an example to demonstrate the adequacy and efficiency of the suggested decoupling approach.

Quality Evaluation of Wind Vectors from UHF Wind Profiler using Radiosonde Measurements (라디오존데 관측자료를 이용한 UHF 윈드프로파일러 바람관측자료의 품질평가)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.133-150
    • /
    • 2015
  • Wind profiler provides vertical profiles of three-dimensional wind vectors with high spatiotemporal resolution. The wind vectors is useful to analyze severe weather phenomena and to validate the various products from numerical weather prediction model. However, the wind measurements are not immune to ground clutter, bird, insect, and aircraft. Therefore, quality of wind vectors from wind profiler must be quantitatively evaluated prior to its application. In this study, wind vectors from UHF wind profiler at Ganwon Regional Meteorological Administration was quantitatively evaluated using 27 radiosonde measurements that were launched every two or three hours according to rainfall intensity during Intensive Observation Period (IOP) from June to July 2013. In comparison between two measurements, wind vectors from wind profiler was relatively underestimated. In addition, the accuracy and quality of wind vectors from wind profiler decrease with increasing beam height. The accuracy and quality of the wind vectors for rainy periods during IOP were higher than for the clear-air measurements. The moderate rainfall intensity lead to multi-peaks in Doppler spectrum. It results in overestimation of vertical air motion, whereas wind vectors from wind profilers shows good agreement with those from radiosonde measurements for light rainfall intensity.

Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR (지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석)

  • Kang, Dong-Bum;Huh, Jong-Chul;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

Effective technique to analyze transmission line conductors under high intensity winds

  • Aboshosha, Haitham;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.235-252
    • /
    • 2014
  • An effective numerical technique to calculate the reactions of a multi-spanned transmission line conductor system, under arbitrary loads varying along the spans, is developed. Such variable loads are generated by High Intensity Wind (HIW) events in the form of tornadoes and downburst. First, a semi-closed form solution is derived to obtain the displacements and the reactions at the ends of each conductor span. The solution accounts for the nonlinearity of the system and the flexibility of the insulators. Second, a numerical scheme to solve the derived closed-form solution is proposed. Two conductor systems are analyzed under loads resulting from HIW events for validation of the proposed technique. Non-linear Finite Element Analyses (FEA) are also conducted for the same two systems. The responses resulting from the technique are shown to be in a very good agreement with those resulting from the FEA, which confirms the technique accuracy. Meanwhile, the semi-closed form technique shows superior efficiency in terms of the required computational time. The saving in computational time has a great advantage in predicting the response of the conductors under HIW events, since this requires a large number of analyses to cover different potential locations and sizes of those localized events.

Variations of the Summertime Tropical Cyclone Intensity near 30°N in East Asia (동아시아의 30°N부근에서 여름철 태풍 강도변화)

  • Choi, Ki-Seon;Kim, Baek-Jo;Lee, Seong-Lo;Kim, Ho-Kyung;Lee, Ji-Sun
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1089-1101
    • /
    • 2009
  • In this paper, changes in the intensity (e.g., central pressure and maximum sustained wind speed) of Tropical Cyclone (TC) in summer in the regions located at $30^{\circ}N$ in East Asia from 1988 to 1991 were found. The intensity of TC from 1991 to 2007 was much higher than that of TC from 1965 to 1988. The reason for this was that the frequency of TCs passing China from 1991 to 2007 was much lower than that of TCs from 1965-1988 because a northeasterly wind caused by high-pressure circulation in East Asia got severer along the East Asian coast. Instead, TCs moved from the eastern region of the Tropical West Pacific to Korea and Japan mainly after passing the East China Sea due to the low-pressure circulation strengthened in the subtropical waters of East Asia. In addition, low Vertical Wind Shear (VWS) was created along the mid-latitude regions of East Asia and the main path of TCs from 1991 to 2007. Most of the regions in the Northwestern Pacific showed higher Sea Surface Temperature (SST) from 1991 to 2007, and had a good environment where TCs were able to maintain a higher intensity on the mid-latitude. In particular, a low sensible heat flux occurred due to high snow depth in East Asia in the spring of 1991 to 2007. Accordingly, the lower layer of East Asia showed high-pressure circulation, and the sea surrounding East Asia showed low-pressure circulation. Thus, the typical west-high, east-low pattern of winter atmospheric pressure was shown. The possibility of snowfall in East Asia in spring to be used as a factor for predicting the summer intensity of TC in the mid-latitude regions of East Asia was insinuated. The characteristics of TC in a low-latitude region were the same in Korea. The latest intensity of TCs got higher, and the landing location of TCs gradually changed from the west coast to the south coast.

A study on bulk deposition flux of dustfall and insoluble components by the wind intensity in Busan, Korea (바람의 강도에 따른 강하먼지와 불용성 성분의 조성특성)

  • 황용식;김유근;박종길;문덕환
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.651-662
    • /
    • 2002
  • Weather elements were observed by the AWS (Automatic Weather System) and dustfall particles were collected by the modified American dust jar (wide inlet bottle type) at 4 sampling sites in Busan area from March. 1999 to February, 2000. Thirteen chemical species (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Si, and Zn) were analyzed by AAS and ICP. The purposes of this study were to estimate qualitatively various bulk deposition flux of dustfall and insoluble components by applying regional and seasonal wind intensity. Frequency of wind speed were found in order of low(1-3m/s), very low(<1m/s), medium(3-8m/s) and high(>8m/s), and annual mean had higher range at low(1-3m/s) for 56.3%. Strong negative linear correlation were observed between dustfall and wind direction (northeastern and eastern), but strong positive linear correlation were observed between dustfall and wind direction (western and northwestern) at industrial, commercial and coastal zone(p<0.05). While a negative correlation were observed between wind speed frequency of very low(<1 m/s) and dustfall, and positive correlation were observed between wind speed frequency of low(1-3m/s) and dustfall in coastal zone(p<0.05). The correlation coefficient was observed 0.556 between wind speed frequency of low(1-3m/s) and Ni by commercial zone(p<0.05). The correlation coeffcient show well-defined insoluble trace metals (Al, Ca, Cr, Cu, Fe, Pb, and Zn) and wind speed frequency of low(1-3m/s) at coastal zone, which was found significant difference(p<0.01).