• Title/Summary/Keyword: high-gain feedback

Search Result 206, Processing Time 0.025 seconds

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.442-448
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback (DVFB) control strategy is not clearly defined so far. It is well known that direct velocity feedback (DVFB) control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated pairs of piezoelectric actuators (20, 50 and 100 mm) and accelerometers installed on three identical clamped-clamped beams (300 * 20 * 1 mm). The response of each sensor-actuator pair requires strictly positive real (SPR) property to apply a high feedback gain. However the length of the piezoactuator affects SPR property of the sensor-actuator response. Intensive simulation and experiment shows the effect of the actuator length variation is strongly related with the frequency range of SPR property. A shorter actuator gave a wider SPR frequency range as a longer one had a narrower range. The shorter actuator showed limited control performance in spite of a higher gain was applied because the actuation force was relatively small. Thus an optimal length ratio (actuator length/beam length) was suggested to obtain relevant performance with good stability with DVFB strategy. The result of this investigation could give important information in the design of active control system to suppress unwanted vibration of smart structures with piezoelectric actuators and accelerometers.

  • PDF

Design of the Anti-windup and Bumpless Transfer Controller with Application to Nonlinear Boiler Systems (누적방지 무충돌 전환 제어기의 설계와 비선형 보일러 시스템 적용)

  • Lee, Young-Sam;Lee, Myung-Eui;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.247-253
    • /
    • 2000
  • In this paper, we deal with the full range control problem of nonlinear boiler systems subject to complex actuator constraints. Firstly, $H\infty$ loop shaping design procedure[10] is used for the controller design. Secondly, modified high-gain feedback[11] for the loop shaping controller is adopted for the anti-windup function and the bumpless transfer technique between controllers is proposed for the full range control of nonlinear systems. Finally, the performance of the proposed controller is demonstrated through the simulation studies.

  • PDF

A CMOS Op-amp Design of Improved Common Mode Feedback(CMFB) Circuit for High-frequency Filter Implementation (고주파용 필터구현을 위한 개선된 CMFB회로를 이용한 CMOS Op-amp 설계)

  • Lim, Dae-Sung;Choi, Young-Jae;Lee, Meung-Su;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.479-482
    • /
    • 1993
  • A fully balanced differential amplifier can achieve high-gain wide-bandwidth characteristics. And also, Offset PSRR, CMRR and Noise performance of that are excellent, but these merits can be achieved only when the architecture holds fully balanced. Commonly, the fully balanced differential amplifier has a common mode feedback(CMFB) circuit in order to maintain the balance. This paper presents improved characteristics of the CMFB circuit and designs the wide-bandwidth CMOS Op-amp. The unity gain bandwidth of this Op-amp is 50MHz with the load capacitor 2pF, and the value of phase margin is $85^{\circ}$.

  • PDF

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

Integrated Rail-to-Rail Low-Voltage Low-Power Enhanced DC-Gain Fully Differential Operational Transconductance Amplifier

  • Ferri, Giuseppe;Stornelli, Vincenzo;Celeste, Angelo
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • In this paper, we present an integrated rail-to-rail fully differential operational transconductance amplifier (OTA) working at low-supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand-by power dissipation (lower than 0.17 mW in the rail-to-rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 ${\mu}m$), presents a 37 V/${\mu}s$ slew-rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.

  • PDF

A 915-MHz RF CMOS Low Power High Gain Amplifier using Q-enhancement Technique for WPAN

  • Han, Dong-Ok;Kim, Eung-Ju;Park, Tah-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.501-502
    • /
    • 2006
  • In this paper low power high gain amplifier is suitable for application in low power systems was designed and fabricated. The amplifier used both subthreshold bias for low power and positive feedback Q-enhancement technique for high gain. The amplifier used TSCM $0.18{\mu}m$ RF CMOS technology measures a power gain of 32.3dB, a quality factor of 366 and a power consumption of 3mW in a supply voltage of 1.8V.

  • PDF

Implementation of automatic gain control circuit for the gain control of receiving stage in pulse doppler radar (펄스 도플러 레이다의 수신단 이득 제어를 위한 자동 이득 조절 장치의 구현)

  • 김세영;양진모;김선주;전병태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.10-20
    • /
    • 1997
  • This paper describes the design, the manufacture and the development of th eautomatic gain control unit which ajdusts the gain of IF processor in the high sensitive & multifunctional receiver unit (HMR) for pulse doppler radar system. Accodording to the effective distnce of target, radar cross section, and a lot of external environments (such as clutter), the receiving stage of RADAR system often deviates from dynamic range. To solve this kind o fproblem, continuous/pulse wave AGC are realized, make it possible to control the gain characteristics of receiver stably, and can increase dynamic range linearly by adjusting the gain slope of receiver which is limited by 1-dB gain compression point. In this study, AGC unit is designed to regulate the total gain of receiver by using te analog feedback theory. It also has rapid enough response to process pulse signal. This study presents the gain control method of IF, the real manufacture technique (the package-type components) and the measurement performance of AGC.

  • PDF

Transistor Wide-Band Feedback Amplifiers (트랜지스터 광대역궤환증폭기)

  • 이병선;이상배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 1968
  • A detailed analysis of the transistor wide-band feedback amplifiers using the hybrid-$\pi$ equivalent circuit has been made. It is considered both for the low freqnency and for the high frequency. The expressions of the gain, bandwidth. input impedance and output impedance have been presented. It is shown that a series feedback amplifier should be driven from the voltage source and should drive into the low resistance load, and a shunt feedback amplifier should be driven from the current source and should drive into the high resistance load. It is also shown that these stages can be coupled without use of the buffer stage or coupling transformer.

  • PDF

A Robust Output Feedback Control of Robot Manipulators with Integral Action (적분작용을 포함하는 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Shin, Eui-Seok;Lee, Kang-Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, we design a robust output feedback controller for robot manipulators with bounded parametric uncertainties using high-gain observer. The proposed control scheme with integral action improves tracking error due to limit of the robust feedback gains. High-gain observer is used to solve the noise problem with the joint velocity measurement. This controller avoids the limitation on the variation of unknown parameters and guarantees the uniformly ultimate boundedness of the closed-loop system. The performance of the proposed method is demonstrated by simulation on a 2-link manipulator.

  • PDF

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.