• Title/Summary/Keyword: high-force-to-volume

Search Result 152, Processing Time 0.029 seconds

Three OOP Haptic Simulator for a Needle Biopsy (3자유도 힘반향 장치를 이용한 침생검 햅틱 시뮬레이터)

  • 권동수;경기욱;감홍식;박현욱;나종범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.539-539
    • /
    • 2000
  • This paper shows how to implement force reflection for a needle insertion problem. The target is a needle spine biopsy simulator for tumor inspection by needle insertion. Simulated force is calculated from the relationship of volume graphic data and the orientation and Position of the needle, and it is generated using PHANTOM$^{TM}$. To generate realistic force reflection, the directional force of the needle has been generated by tissue model. The other rotational force is generated using a pivot to keep the needle in the initial inserted direction after puncturing the skin. Since the used haptic device has limitation for generating high stiffness and large damping, scale downed model and digital filter are used to stabilize the system.m.

  • PDF

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

Nanoscale quantitative mechanical mapping of poly dimethylsiloxane in a time dependent fashion

  • Zhang, Shuting;Ji, Yu;Ma, Chunhua
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.253-261
    • /
    • 2021
  • Polydimethylsiloxane (PDMS) is one of the most widely adopted silicon-based organic polymeric elastomers. Elastomeric nanostructures are normally required to accomplish an explicit mechanical role and correspondingly their mechanical properties are crucial to affect device and material performance. Despite its wide application, the mechanical properties of PDMS are yet fully understood. In particular, the time dependent mechanical response of PDMS has not been fully elucidated. Here, utilizing state-of-the-art PeakForce Quantitative Nanomechanical Mapping (PFQNM) together with Force Volume (FV) and Fast Force Volume (FFV), the elastic moduli of PDMS samples were assessed in a time-dependent fashion. Specifically, the acquisition frequency was discretely changed four orders of magnitude from 0.1 Hz up to 2 kHz. Careful calibrations were done. Force data were fitted with a linearized DMT contact mechanics model considering surface adhesion force. Increased Young's modulus was discovered with increasing acquisition frequency. It was measured 878 ± 274 kPa at 0.1 Hz and increased to 4586 ± 758 kPa at 2 kHz. The robust local probing of mechanical measurement as well as unprecedented high-resolution topography imaging open new avenues for quantitative nanomechanical mapping of soft polymers, and can be extended to soft biological systems.

Design and Analysis of a Dual-Stator Spoke-Type Linear Vernier Machine for Wave Energy Extraction

  • Khaliq, Salman;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1700-1706
    • /
    • 2016
  • In this paper, a dual-stator, spoke-type linear vernier machine (DSSLVM) for wave energy extraction application was proposed. This machine is capable of producing a competitively high thrust force and force density at a low operation speed in direct drive systems. The operation principal and working of the proposed DSSLVM were studied. The stator core height is adjusted to improve the overall force density of the proposed machine while reducing the force ripple. To evaluate the advantages of the proposed DSSLVM, the main performance was compared with that of a recently developed linear primary permanent magnet vernier machine (LPPMVM). The proposed machine exhibited greater thrust force and force density, an improved power factor and lower force ripple with the same permanent magnet (PM) volume compared to the LPPMVM.

The Braking Performance of Touch Free Linear Eddy Current Brake According to The number of Poles (극수변화에 따른 비접촉 와전류 제동기의 제동 특성)

  • Ha, Kyung-Ho;Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Gyu-Tak;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.91-93
    • /
    • 1998
  • This paper describes the braking performance of the eddy current brake for high speed trains according to the number of poles. The eddy current brake systems have to be equipped with the maximum braking force and deceleration in the given volume or mass, high braking force rate, as small normal forces as possible and stable construction. The parameters, such as the number of poles, electric ampere turns, slot width have influence on the braking force characteristics. In this paper, the effect of braking performance from the variation of the number poles is calculated by using FEM, the number of the pole which makes the maximum braking force is proposed.

  • PDF

Novel Design and Research for a High-retaining-force, Bi-directional, Electromagnetic Valve Actuator with Double-layer Permanent Magnets

  • You, Jiaxin;Zhang, Kun;Zhu, Zhengwei;Liang, Huimin
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • To increase the retaining force, a novel design for a concentric, bi-directional, electromagnetic valve actuator that contains double-layer permanent magnets is presented in this paper. To analyze the retaining-force change caused by the magnets, an equivalent magnetic circuit (EMC) model is established, while the EMC circuit of a double-layer permanent-magnet valve actuator (DLMVA) is also designed. Based on a 3D finite element method (FEM), the calculation model is built for the optimization of the key DLMVA parameters, and the valve-actuator optimization results are adopted for the improvement of the DLMVA design. A prototype actuator is manufactured, and the corresponding test results show that the actuator satisfies the requirements of a high retaining force under a volume limitation; furthermore, the design of the permanent magnets in the DLMVA allow for the attainment of both a high initial output force and a retaining force of more than 100 N.

A Study on the Design of Touch Free Eddy-Current Brake (비접촉 와전류 제동기의 설계에 관한 연구)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Tak;Gang, Do-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.77-83
    • /
    • 2000
  • This paper deals with the design of a touch free eddy-current brake for high speed transportation systems by using 2-dimensional Finite Element Method (2-D FEM). The eddy current brake systems have to equipped with maximum braking force and deceleration at the given volume or mass, high braking force at small rate, attraction forces as small as possible and stable construction. The parameters, such as the number of pole, electric ampere-turns and slot width have influence on these braking characteristics. For the magnet to satisfy above-mentioned performance in high speed, the braking performance according to variation of the parameters are analyzed by the 2-D FEM. In addition, the magnet stack width is determined from equivalent stack width that is calculated by solution of the Field with scalar potential. From these results, the magnet of optimized configuration with maximum braking force and minimum attraction force is designed by the process of detail design.

  • PDF

Effect of Magnetic Force on the Compressive and Dynamic Properties of Magnetorheological Elastomers (자기력이 자기유동 탄성체의 압축 및 동적 특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo;Lee, Jong-Hang
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • The compressive and dynamic properties of magnetorheological elastomers were investigated as functions of magnetizable particle volume fraction, alignment of the embedded particle and magnetic force. The specimens consisted of pure and filled silicons with randomly dispersed, longitudinal and transverse aligned magnetizable particle chains. To align the embedded particles in the elastomer, the cross-linking of the elastomer composites took place in a magnetic field. The compression and dynamic tests in the absence and the presence of different magnetic forces were carried out. The modulus and loss factor of the elastomer composites increase with increasing volume fraction at the same magnetic force. The case of longitudinal alignment shows a high modulus and loss factor when compared to the case of transverse alignment or random dispersion.

Design and Analysis of a Material Efficient Sinusoidal Consequent-Pole High-Speed Axial-Flux Machine

  • Kumar, Sunil;Kwon, Byung-il
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.759-766
    • /
    • 2018
  • This paper presents a high-speed axial-flux machine which utilizes the idea of sinusoidal shaped pole combined with a consequent iron-pole. The target of the proposed machine is the cost reduction of the relatively expensive Samarium-Cobalt (SmCo) permanent magnet (PM) material and the torque per PM volume improvement by using sinusoidal consequent-pole rotor. The effectiveness of the proposed machine is validated by comparing it with conventional consequent-pole and with conventional PM machines using 3-D finite element method (FEM) simulations. The comparison and analysis is done in terms of back electro-motive force (back-EMF) harmonic contents, torque per PM volume and torque ripple characteristics. The simulation results show that the proposed machine is suitable and cost-effective for high-speed and high torque per PM volume applications. Furthermore, due to the consequent pole, the magnetic flux saturation and the overload current torque-capability are also presented and discussed in the paper.

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF