• Title/Summary/Keyword: high-density grain

Search Result 541, Processing Time 0.028 seconds

Microstructural Evolution of Thick Tungsten Deposit Manufactured by Atmospheric Plasma Spray Forming Route (Plasma Spray Forming 공정에 의해 제조된 텅스텐 성형체의 미세조직 형성 거동)

  • Lim, Joo-Hyun;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.403-409
    • /
    • 2009
  • Plasma spray forming is recently explored as a near-net-shape fabrication route for ultra-high temperature metals and ceramics. In this study, monolithic tungsten has been produced using an atmospheric plasma spray forming and subsequent high temperature sintering. The spray-formed tungsten preform from different processing parameters has been evaluated in terms of metallurgical aspects, such as density, oxygen content and hardness. A well-defined lamellae structure was formed in the as-sprayed deposit by spreading of completely molten droplets, with incorporating small amounts of unmelted/partially-melted particles. Plasma sprayed tungsten deposit had 84-87% theoretical density and 0.2-0.3 wt.% oxygen content. Subsequent sintering at 2500$^{\circ}C$ promoted the formation of equiaxed grain structure and the production of dense preform up to 98% theoretical density.

High Temperature Deformation Behavior of Nano Grain W Produced by SPD-PM Process

  • Oda, Eiji;Ohtaki, Takao;Kuroda, Akio;Fujiwara, Hiroshi;Ameyama, Kei;Yoshida, Kayo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.126-127
    • /
    • 2006
  • In this study, nano grain W is fabricated by Severe Plastic Deformation-Powder Metallurgy (SPD-PM) process. W powder and W-Re powder mixtures are processed by SPD-PM process, a Mechanical Milling (MM) process. As results, a nano grain structure, whose grain size is approximately 20nm, is obtained in W powder after MM for 360ks. A nano grain W compact, whose grain size 630nm, has excellent deformability above 1273K. A nano grain W-10Re compact is composed of equiaxed grain, a grain growth is restrained and has low dislocation density after the large deformation; therefore it is considered that W-Re compact shows superplasticity.

  • PDF

Ni-Grain Size Dependent Growth of Vertically Aligned Carbon Nanotubes by Microwave Plasma-Enhanced Chemical Vapor Deposition and Field Emission Properties

  • Choi, Young-Chul;Jeon, Seong-Ran;Park, Young-Soo;Bae, Dong-Jae;Lee, Young-Hee;Lee, Byung-Soo;Park, Gyeong-Su;Choi, Won-Bong;Lee, Nae-Sung;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.231-234
    • /
    • 2000
  • Vertically aligned carbon nanotubes were synthesized on Ni-coated Si substrates using microwave plasma-enhanced chemical vapor deposition. The grain size of Ni thin films was varied with the RF power density during the RF magnetron sputtering process. It was found that the diameter, growth rate, and density of carbon nanotubes could be controlled systematically by the grain size of Ni thin films. With decreasing the grain size of Ni thin films, the diameter of the nanotubes decreased, whereas the growth rate and density increased. High-resolution transmission electron microscope images clearly demonstrated synthesized nanotubes to be multiwalled. The number of graphitized wall decreased with decreasing the diameter. Field emission properties will be further presented.

  • PDF

Effect of Grain Specific Gravity on Seedling Growth and Vascular Bundle Development of Two Rice Cultivars (벼종자의 비중차이가 유묘생장 및 유관속 발달에 미치는 영향)

  • Chae, Je-Cheon;Lee, Dong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.1
    • /
    • pp.62-67
    • /
    • 1996
  • High density (HD) grains is associated with seedling vigor. Studies were conducted on the relationship of different grain densities and vascular bundle(VB) development and seedling growth. IR58 (indica type) and Unbong 7 (japonica type) were used in this experiment. HD grains had more and bigger VB in the leaf blade and sheath than poor density grain at seedling stage. IR58 had more large VB at the leaf compared with Unbong 7. Higher development of VB in seedling of HD grains can increase transport of assimilate and growth rate. Plant height, leaf number, root growth and dry weight increased with increasing grain density from poor to high. The total area of large VB in the leaf blade and sheath was highly correlated with the dry weight. Higher number and larger area of VB and dry weight can be obtained by using HD grains and these initial advantages can contribute to high yield potential.

  • PDF

Ceramic magnetic core material for coupling unit under the condition of high voltage as a part of the PLC (전력선 통신(PLC)을 위한 HV 커플러용 자심재료)

  • 이해연;김현식;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.365-368
    • /
    • 2000
  • We have studies on the Microstructures and densities as a function of forming pressures and the magnetic properties of the specimens with additive Bi$_2$O$_3$ that sintered at 95$0^{\circ}C$ for 4.5 hours for synthesizing optimal Ni-Cu-Zn ferrite. Green density rose generally as Forming pressure increased from 1.7 ton/cm$^2$to 2.5 ton/cm$^2$and Cold Isostatic Pressure(CIP) method was more effective than Die Pressure(DP) method to high green density. Forming pressure had no influence on apparent density but on the other hand Bi$_2$O$_3$contents were strongly dominant to appaernt density than forming pressure. Bi$_2$O$_3$liquid phases created during sintering process promoted sintering and grain growth so that apparent density, grain size and permeability increased compared to that of the specimens which were sintered with non-additive Bi$_2$O$_3$.

  • PDF

Comparison of Grain Filling Characteristics by Source-Sink Size Control in Glutinous and Non-glutinous Near Isogenic Line of Rice (근동질유전자 계통인 찰벼와 메벼의 전엽과 절영처리에 따른 등숙특성 비교)

  • 김춘송;안종국;정일민;강항원;이재생;고지연;박성태
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.243-250
    • /
    • 2004
  • Two cultivars which are glutinous (Hawcheongchalbyeo) and non-glutinous (Hawcheongbyeo) near isogenic line of rice, were used for this study. The objective of this experiment was to gain the basic information for increasing grain yield of waxy rice by means of source and sink size control. In both Hwacheongbyeo and Hawcheongchalbyeo, the trend of decrease in total and average spikelet weight was ranked as follows; removal of penultimate leaf< removal of flag leaf< removal of flag leaf and 3ya leaf from the top < removal of flag leaf and penultimate leaf < removal of flag leaf, penultimate leaf, and 3rd leaf from the top. The reduction yale of total and average spikelet weight per panicle of Hwacheongbyeo was higher than those of Hwacheongchalbyeo according to the removal of flag leaf, penultimate leaf, and 3rd leaf from the top. In both cultivars, high-density grain ratio and grain filling ratio of the primary branches were higher Hun those of the secondary branches by leaf clipping treatment. The spikelet number and total spikelet weight per pinicle in both Hwacheongbyeo and Hwacheongchalbyeo were decreased by removal of spikelets on branches compared with control, whereas average spikelet weight and grain filling ratio were increased. The increase rate of average spikelet weight of Hwacheongchalbyeo was much higher than that of Hwacheongbyeo by sink size control. High-density grain ratio by removal of spikelets on branches was higher in Hwacheongchalbyeo, but filled grain ratio was higher in Hwacheongbyeo.

Occurrence of Tiller and Its Effects on Grain Yield of Barley under Different Plant Densities. (대맥의 파종밀도가 분얼발생 및 각얼자의 특성과 수량에 미치는 영향)

  • 신만균;맹돈재;하용웅
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.294-301
    • /
    • 1987
  • This experiment was carried out to investigate the occurrence of tiller and its proportion to grain yield under 5 different plant densities. Plant density 5 x 5cm was more favorable for increasing the number of spikes per unit area, where leads to improve grain yield. Effective tillers showed only main stem, M$_1$-axil and M$_2$-axil, indication more effective tillers in M$_1$ rather than main stem. Every tillers held at least 6 leaves to bear spikes, indicating that main stem has 12 -13 leaves. Leaves attached on main stem M$\sub$0/ and M$_1$ were very important as main source of photosynthesis, especially under more compart plant densities while leaves of M$_1$ occupied 66.8% in a plant. The proportion of grain yield of each tiller to total grain yield per plant was high in main stem under conpact plant density, in M$_1$ stems under less compact plant density, and in M$_2$ -stems under wide plant density, indicating same result on multiple regression analysis.

  • PDF

Preparation of High density YIG ferrite by conventional solid-state sintering (고상합성법에 의한 고밀토 YIG 자성체 제조)

  • Kim, Dong-Young;Jun, Dong-Suk;Lee, Hong-Yeol;Lee, Sang-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.533-536
    • /
    • 2003
  • YIG(Yttrium Iron Garnet) is one of the most widely used ferrites for microwave telecommunication. It used as a passive devices such as isolators and circulators. In order to reduce the insertion losses of these passive devices, it is very important to reduce magnetic loss of the ferrites. In general, the magnetic losses of ferrites is closely related to the microstructure of the ceramics. In the sintering of YIG, pores are easily trapped in grains and grain boundaries. These pores cause to increase magnetic losses of the sinterted bodies. In this paper, the effect of the $SiO_2$ addition on the microstructure was discussed. Increasing the $SiO_2$ addition, the grain size was reduced, which means that added acts as a grain-growth inhibitor. During the sintering, $SiO_2$ settled down on the grain boundaries, and drag the grain growth. Therefore, there is enough time for pores to move out. The relative density of YIG sintered at $1350^{\circ}C$ with 1 mol% $SiO_2$ addition was 99.6%. $\Delta$H of these samples was under 50 Oe.

  • PDF

Fabrication of Fine-grained Molybdenum Sintered Body via Modified Sintering Process (소결 공정 개선을 통한 미세 결정립 몰리브덴 소결체 제조)

  • Lee, Tae Ho;Kim, Se Hoon;Park, Min Suh;Suk, Myung Jin;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.868-873
    • /
    • 2011
  • In this study, the fabrication of ultra fine grained Mo bulk was conducted. $MoO_3$ nanopowders were prepared by a high energy ball-milling process and then reduced at the temperature of $800^{\circ}C$ without holding time in $H_2$ atmosphere. The particle size of Mo nanopowder was ~150 nm and grain size was ~40 nm. The two-step process was employed for the sintering of Mo nanopowder to obtain fine grain size. The densification over 90% could be obtained by the two-step sintering with a grain size of less than 660 nm. For higher density, modified two-step sintering was designed. 95% of theoretical density with the grain size of 730 nm was obtained by the modified two-step sintering.

Sintering Behavior of $B_4C-SiC$ Composite ($B_4C-SiC$ 복합체의 상압소결거동)

  • 김득중;강을손
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.739-744
    • /
    • 1994
  • The B4C-C system was investigated to gain an understanding of the sintering behaviors of B4C. In order to get sintered density of 97% TD, sintering temperature of 225$0^{\circ}C$ was necessary. Since such a high temperature operation is actually difficult on a commercial basis, our objective was to examine the possibility of decreasing the sintering temperature by adding SiC. The addition of SiC in B4C increases the sintering rate about at 210$0^{\circ}C$ and results in a fine microstructure with more than 98% relative density on 55 wt% B4C-40wt% SiC-5 wt% C composition. The probability of liquid phase sintering was investigated, but the evidences of liquid phase formation were not observed with XRD and TEM observation. It was proposed that the addition of SiC and carbon to B4C reduce interface energy during sintering, which results in enhanced grain-boundary diffusion. Thus, the enhanced grain-boundary diffusion and retarded grain growth by SiC improve densification.

  • PDF