• 제목/요약/키워드: high-calcium fly ash

검색결과 48건 처리시간 0.041초

펠렛 피복물질의 물리, 화학적 특성이 당근 펠렛종자의 발아력에 미치는 영향 (Effect of Physical, Chemical Properties and of Pelleting Solid Materials on the Germination in Pelleted Carrot Seeds)

  • 강점순;손병구;최영환;이용재;박영훈;최인수
    • 생명과학회지
    • /
    • 제17권12호
    • /
    • pp.1701-1708
    • /
    • 2007
  • 펠렛의 목적은 기계화 정밀파종하여 파종과 솎음노력을 절감하는데 있다. 펠렛 피복물질의 용적밀도는 dialite, kaolin 및 talc 등이 낮았고 기공성은 높았다 보수력이 우수한 피복물질은 bentonite와 dialite 이었으며, 184% 및 173%의 수분을 보유할 수 있었다. 반면 calcium carbonate, calcium oxide, fly ash등은 보수력이 낮은 펠렛 피복물질이었다. 펠렛 피복물질의 pH는 kaolin과 dialite에서 각각 6.8 및 7.4로 중성이었으나, limestone, calcium oxide, bentonite 등은 pH가 12.8, 13및 10으로 강알카리였다. 전기전도도는 강알카리인 limestone, calcium oxide에서 높았다. 이와 같이 높은 pH와 전기전도도를 보인 피복물질들은 당근종자의 펠렛에 적합하지 않았다. 펠렛 피복물질를 EDS로 분석한 결과, Talc는 주성분이 Si (71%)이었고, Mg도 29% 함유하였다. 반면 calcium carbonate의 주요성분은 Ca (66.6%)이었으며, 이외에 Si (22.9%)와 Mg (10.5%)를 함유하였다. 펠렛 형성정도는 kaoline, talc 및 talc + calcium carbonate 혼합재료에서 우수하였다. 펠렛종자의 경도는 bentonite로 펠렛된 종자에서 가장 높았다. 수분흡수 후 펠렛층의 분해형태는 talc, limestone, zeolite, 및 fly ash는 열개형이었고, 용해형은 calcium carbonate와 calcium oxide등이었다. 반면 bentonite와 vermiculite는 팽창형이었다. 수분흡수 후 펠렛층의 분해는 calcium carbonate 및 kaolin으로 펠렛된 종자에서 분해가 가장 빨랐다. 펠렛배율이 높아지면 발아속도$(T_{50})$는 지연되었다. 당근종자에서 적정 펠렛배율은 19배가 좋았다.

산업부산물 및 규산칼슘계 재료를 이용한 건재용 경량.고강도 복합체의 개발.평가에 관한 실험적 연구(기 1) (Experimental Study on the Development and Evaluation of Lt.Wt.& High Strength Composites Utilizing By-Products and Calcium Silicates for Construction Materials(1))

  • 박승범
    • 콘크리트학회지
    • /
    • 제6권4호
    • /
    • pp.141-152
    • /
    • 1994
  • 산업부산물의 플라이애쉬와 실리카흄 및 국내 부존자원이 풍부한 규사분말, 생석회 및 발포용 알루미늄 분말과 취성개선을 위한 보강용 섬유를 사용한 경량 고강도의 시멘트복합체의 개발을 위하여 오토클래브 양생에 의한 열수 알카리분위기에서의 섬유 자체의 열화현상을 조사함과 아울러 배합요인별로 건재용 경량섬유보강 규산칼슘계 시멘트복합에를 제조하여 그 역학적 특성에 관한 연구를 수행하였다. 시험결과, 탄소섬유 및 내알카리성 유리섬유는 보강용 섬유로서 적합함이 확인되었으며, 경량 섬유보강 규산칼슘계 시멘트복합체의 압축, 인장, 휨강도는 플라이애쉬와 실리카흄 혼입율 및 섬유혼입율이 증가함을 따라 증가하는 경향을 나타내었고 또한 섬유혼입율 증가에 따라 현저히 휨인성이 증가하였으며, 탄소섬유보강의 경유가 유리섬유보강의 경우에 비하여 압축, 인장, 휨강도 및 휨인성은 다소 높은 경향을 나타내었다.

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

고온에서의 알칼리 활성화 내화성 결합재의 강도 및 공극구조 평가 (Estimation of Strength and Pore Structure of Alkali-Activated Fire Protection Materials at High Temperature)

  • 송훈;김영호;김완기;소형석
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-66
    • /
    • 2012
  • This study is interested in identifying the effectiveness of alkali-activated fire protection material compounds including the alkali-activator such as potassium hydroxide, sodium silicate and fly ash as the fire resistant finishing materials. Also, this paper is concerned with change in compressive strength and pore structure of the alkali-activated fire protection material at high temperatures. The testing methods of fire protection materials in high temperature properties are make use of TG-DSC and mercury intrusion porosimetry measurements. This study results show that compressive strength is rapidly degraded depending on a rise of heating temperature. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. However, alkali-activated fire protection material composed of potassium hydroxide, sodium silicate and fly ash has the thermal stability of the slight decrease of compressive strength and porosity at high temperature. These thermal stability is caused by the ceramic binding capacity induced by alkali activation reaction by the reason of the thermal analysis result not showing the decomposition of calcium hydrate.

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.

플라이애시 및 경량골재를 활용한 경량 내화성 마감재료 개발 (Development of Light-weight Fire Protection Materials Using Fly Ash and Light-weight Aggregate)

  • 송훈;추용식;이종규;이세현
    • 한국건설순환자원학회논문집
    • /
    • 제6권4호
    • /
    • pp.95-102
    • /
    • 2012
  • 고층건축물의 구조부재로 적용되는 철골이나 고강도콘크리트로 시공된 경우 내화대책은 필수 불가결한 요소이며 특히, 고강도콘크리트로 적용된 경우 폭렬 등에 의한 단면결손이 발생하기 쉽기 때문에 이에 대한 대책이 필요하다. 즉, 내화성능 확보를 위해 온도상승을 허용범위 이내로 억제하는 대책이 필요하며 이 중 가장 효율적인 방법이 내화성 마감을 실시하는 것이다. 일반적으로 내화성 마감재에 사용되는 시멘트계 재료는 C-S-H, 및 CH가 단계적으로 열 분해되어 압축강도는 저하하게 된다. 내화성능을 발휘하기 위해 고온에서 강도감소가 작고 안정적인 고온특성을 보인다면 보다 효과적으로 성능 발현이 가능할 것이다. 본 연구는 고층건축물의 철골 및 콘크리트 부재의 효과적인 내화성능 발현을 위한 경량 내화성 마감재 개발을 위한 연구로 내화성능이 우수하다고 알려진 Alumino-silicate계 재료를 내화성 마감에 적용하기 위해 고온특성에 대해 검토하였다. 검토 결과, 플라이애시, 메타카올린 및 경량골재를 활용한 경량 내화성 마감재는 고온에서 비교적 안정적인 특성을 발현하여 내화성 마감재로의 효용성을 확인할 수 있었다.

  • PDF

알루미나 골재 첨가에 따른 플라이애쉬-고로슬래그계 지오폴리머의 열적특성 (Thermal property of geopolymer on fly ash-blast furnace slag system with the addition of alumina aggregate)

  • 김진호;남인탁;박현;김경남
    • 한국결정성장학회지
    • /
    • 제27권1호
    • /
    • pp.47-56
    • /
    • 2017
  • 본 연구에서는 Alumina 골재를 사용한 fly ash-blast furnace slag계 Geopolymer의 내열성 건축자재로서의 사용 가능성을 검토하기 위하여 고온조건에서의 열적 특성에 대하여 조사하였다. 모든 배합조건에서 Geopolymer 경화체의 표면 크랙은 $800^{\circ}C$까지는 관찰되지 않았으며, 이것은 열처리 전후 강도의 변화가 작은 것과 일치한다. 또한, $800^{\circ}C$까지 고로슬래그의 혼합비율이 60 wt%일 때 잔존압축강도가 가장 우수한 것으로 나타났다. Geopolymer 경화체의 주요 수화 생성물은 $20{\sim}35^{\circ}$(2theta) 범위의 비정질 halo 패턴과 원재료의 mullite($3Al_2O_3{\cdot}2SiO_2$)와 quartz($SiO_2$)가 확인되었다. 비정질 halo 패턴은 Geopolymer 축중합 반응에 의해서 생성된 aluminosilicate gel이며, $800^{\circ}C$까지는 aluminosilicate gel의 halo 패턴이 유지되고 있음을 알 수 있다. $1,000^{\circ}C$에서 aluminosilicate gel의 패턴은 사라지며 열처리온도의 증가와 함께 gehlenite, calcium silicate, calcium aluminum oxide, microcline와 같은 결정상이 관찰되었다.

Simulation of Hydration of Portland Cement Blended With Mineral Admixtures

  • Wang, Xiaoyong;Lee, Han-Seung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.565-566
    • /
    • 2009
  • Supplementary cementing materials (SCM), such as silica fume, slag, and low-calcium fly ash, have been widely used as mineral admixtures in high strength and high performance concrete. Due to the chemical and physical effect of SCM on hydration, compared with Portland cement, hydration process of cement incorporating SCM is much more complex. This paper presents a numerical hydration model which is based on multi-component concept and can simulate hydration of cement incorporating SCM. The proposed model starts with mixture proportion of concrete and considers both chemical and physical effect of SCM on hydration. Using this proposed model, this paper predicts the following properties of hydrating cement-SCM blends as a function of hydration time: reaction ratio of SCM, calcium hydroxide content, heat evolution, porosity, chemically bound water and the development of the compressive strength of concrete. The prediction results agree well with experiment results.

  • PDF

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.