• Title/Summary/Keyword: high-Q

Search Result 2,363, Processing Time 0.028 seconds

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

A triplex real-time PCR assay for simultaneous and differential detection of Bordetella bronchiseptica, Mycoplasma cynos, and Mycoplasma canis in respiratory diseased dogs

  • Gyu-Tae Jeon;Jong-Min Kim;Jeong-Hyun Park;Hye-Ryung Kim;Ji-Su Baek;Hyo-Ji Lee;Yeun-Kyung Shin;Oh-Kyu Kwon;Hae-Eun Kang;Soong-Koo Kim;Jung-Hwa Kim;Young-Hwan Kim;Choi-Kyu Park
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • Bordetella (B.) bronchiseptica, Mycoplasma (M.) cynos, and M. canis are the major bacterial pathogens that cause canine infectious respiratory disease complex (CIRDC). In this study, we developed a triplex real-time polymerase chain reaction (tqPCR) assay for the differential detection of these bacteria in a single reaction. The assay specifically amplified three bacterial genes with a detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra- and inter-assay variations of less than 1%. The diagnostic results of the assay using 94 clinical samples from household dogs with CIRDC clinical signs, the prevalence of B. bronchiseptica, M. cynos, and M. canis was 22.3%, 18.1%, and 20.2%, respectively, indicating that the diagnostic sensitivity was comparable to those of previously reported qPCR assays. The dual infection rate of B. bronchiseptica and M. cynos, B. bronchiseptica and M. canis, and M. cynos and M. canis was 5.3%, 7.4%, and 3.1%, respectively. Moreover, the triple infection rate of B. bronchiseptica, M. cynos, and M. canis was 2.1%. These results indicate that coinfections with B. bronchiseptica, M. cynos, and M. canis have frequently occurred in the Korean dog population. The newly developed tqPCR assay in the present study will be a useful tool for etiological and epidemiological studies on these three CIRDC-associated bacterial pathogens. The prevalence and coinfection data revealed through this study will contribute to expanding knowledge on the epidemiology of CIRDC in the recent Korean dog population.

Calculation of high discharge under hydrological conditions with probability frequency - Focusing on the Seolmacheon catchment - (확률빈도를 갖는 수문조건에서의 고유량 산정 - 설마천 유역을 중심으로 -)

  • Kim, Dong Phil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.385-385
    • /
    • 2021
  • 하천에서 실제로 유속 2.0m/s 이상 발생할 시 유량측정은 매우 급변하는 유속과 수위변화에 따른 측정값의 불확실성, 운영적인 측면에서의 시·공간적 한계 등으로 고유량에 대해 정확한 유량을 산정하기 어려운 실정이다. 그리고 국가하천은 최소 80년 빈도 이상, 지방하천은 최소 50년 빈도 이상의 확률강우량 채택을 통해 고유량에 해당하는 계획홍수량을 산정하고 있으나, 실제로 높은 호우의 빈도는 쉽게 발생하지 않아 유량측정성과가 부재하거나 매우 극소수에 불과한 상황이다. 따라서 유량측정성과는 대상하천의 계획홍수량(계획홍수위) 이하의 수준, 즉 중규모 수위 이하의 구간에서 대부분의 성과를 가지고 있으므로 고유량 산정은 고수위 외삽추정식에 의존할 수밖에 없다. 고수위 외삽추정은 대체로 기 유량측정성과(h, q)와 통수단면적(AD1/2) 자료를 이용하는 Stevens 방법을 주로 이용하며, 이 방법은 하폭에 비해 수심이 비교적 작은, 얕은 하천과 기 유량측정성과가 추정하려는 고수위 구간에 근접한 경우에 적용성이 매우 용이하다고 할 수 있다. 설마천 유역 전적비교 수위관측소의 경우는 수위 4.110m까지 최대로 통수할 수 있으며, 하폭은 24.230m, 관측 최고수위는 3.194m, 유량측정성과 최대수위는 1.613m(40.303m3/s)이다. 설마천 유역에 대해 Stevens 방법을 적용하는 경우 위 조건을 만족하지 않으므로 다른 방법으로의 접근이 필요하다. AMC-III 조건의 선행강수량과 지속기간 1시간을 갖는 최대강우강도별 관측도달시간 자료를 통해 관계식을 유도하였으며, 강우 빈도해석의 결과인 지속기간 1시간의 빈도별 강우강도에 해당하는 도달시간을 유속으로 환산하는 과정을 거쳤다. 그 결과 유속은 1.808m/s(2년 빈도_43.3mm)~4.254m/s(500년 빈도_101.9mm)이며, 기 유량측정성과의 결과인 수위, 통수단면적, 유속, 유량, 최대강우강도(86.1mm_80년 빈도)가 발생했을 때의 해당 유속(도달시간 환산값), 수위, 통수단면적을 통해 최종적으로 빈도(년)별 유속, 수위, 유량을 결정하였다. 한국하천일람(2018)에서 제시된 설마천 전체 유역의 80년 빈도 계획홍수량(315m3/s, A=17.59km2) 값은 전적비교 수위관측소(A=8.48km2)와 직접적인 비교는 어렵지만, 유역면적비(0.482)를 적용한 추정된 계획홍수량은 약 152m3/s 볼 수 있다. 상기의 빈도별 유속, 수위, 통수단면적 결과인 80년 빈도(86.1mm)-유속(3.594m/s)-수위(3.194m)-통수단면적(53.197m2)에 해당하는 계산된 유량은 191.212m3/s로 분석되었다. 그리고 최대통수가 가능한 수위 4.110m의 계산된 유량은 313.674m3/s(약 424년 빈도 추정, 유속 4.203m/s, 통수단면적 74.761m2)로 결국에는 빈도(년)에 해당하는 수위-유량관계식(고수위 외삽추정식)을 통해 고유량을 산정할 수 있었다.

  • PDF

Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep

  • Listyarini, Kasita;Sumantri, Cece;Rahayu, Sri;Uddin, Muhammad Jasim;Gunawan, Asep
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1489-1498
    • /
    • 2022
  • Objective: The objective of this study was to identify polymorphism in olfactomedin like 3 (OLFML3) gene, and association analysis with meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep, and expression quantification of OLFML3 gene in phenotypically divergent sheep. Methods: A total of 328 rams at the age of 10 to 12 months with an average body weight of 26.13 kg were used. A novel polymorphism was identified using high-throughput sequencing in sheep and genotyping of OLFML3 polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Among 328 rams, 100 rams representing various sheep genotypes were used for association study and proc general linear model was used to analyse association between genotypes and phenotypic traits. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for the expression analysis of OLFML3 mRNA in phenotypically divergent sheep population. Results: The findings revealed a novel polymorphism in the OLFML3 gene (g.90317673 C>T). The OLFML3 gene revealed three genotypes: CC, CT, and TT. The single nucleotide polymorphism (SNP) was found to be significantly (p<0.05) associated with meat quality traits such as tenderness and cooking loss; carcass characteristics such as carcass length; retail meat cut such as pelvic fat in leg, intramuscular fat in loin and tenderloin, muscle in flank and shank; fatty acids composition such as tridecanoic acid (C13:0), palmitoleic acid (C16:1), heptadecanoic acid (C17:0), ginkgolic acid (C17:1), linolenic acid (C18:3n3), arachidic acid (C20:0), eicosenoic acid (C20:1), arachidonic acid (C20:4n6), heneicosylic acid (C21:0), and nervonic acid (C24:1). The TT genotype was associated with higher level of meat quality, carcass characteristics, retail meat cut, and some fatty acids composition. However, the mRNA expression analysis was not different among genotypes. Conclusion: The OLFML3 gene could be a potential putative candidate for selecting higher quality sheep meat, carcass characteristics, retail meat cuts, and fatty acid composition in sheep.

20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3

  • Siyu Cheng;Langqun Chen;Jiahui Ying;Ying Wang;Wenjuan Jiang;Qi Zhang;Hong Zhang;Jiahe Wang;Chen Wang;Huimin Wu;Jing Ye;Liang Zhang
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.298-309
    • /
    • 2024
  • Background: 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods: Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results: Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions: This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.

Chemical profile and antioxidant activity of peel of Yellowball, a novel citrus variety

  • Sun Lee;Seong-Ho Jo;Ji-Hyun An;Seong-man Jeong;Dong-Shin Kim;Sang Suk Kim;Suk Man Park;Su Hyun Yun;Seung-Gab Han;Hyun-Jin Kim
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.235-246
    • /
    • 2023
  • Yellowball (Citrus hybrid cv. Yellowball ) is a new citrus hybrid between Haruka (C. tamurana × natsudaidai ) and Kiyomi (C. unshiu × sinensis) and is known to possess strong antioxidant activity. However, detailed information on the antioxidant components of its peel has not yet been reported. This study evaluated the antioxidant activity of the peel and identified the antioxidant components by fractionating a methanolic extract of Yellowball peels using liquid-liquid extraction with n-hexane, ethyl ether (ether), ethyl acetate (EA), butanol, and water. The phenolic contents and antioxidant activities of the n-hexane, ether, and EA fractions were higher than those of the other fractions, and these fractions were further separated by semi-preparative high-performance liquid chromatography (HPLC). Four antioxidant peaks, EA1, EA2, EA3, and He1, were isolated and analyzed using ultra-performance liquid chromatography-quadrupole-time- of-flight mass spectrometry (UPLC-Q-TOF MS). Sinapoyl glucoside and hesperidin were identified in EA2 and EA3, respectively, and a polymethoxylated flavone (PMF) complex (5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, natsudaidain, tetrameth- oxyflavone, and tangeretin) was identified in He1. A compound in EA1 with m/z 223.0246 [M-H] could not be identified and was named unknown2. The antioxidant activity of unknown2 (IC50=69.17 ㎍/mL) was similar to that of Trolox, which was noted as a major antioxidant in Yellowball peel. Further studies on the antioxidant capacity of Yellowball peel are required; however, these results provide a foundation for using Yellowball peel as an antioxidant.

Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System

  • So Jeong Lee;Ji Eun Park;Seo Young Park;Young-Hoon Kim;Chang Ki Hong;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.772-783
    • /
    • 2023
  • Objective: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. Materials and Methods: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-codeleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. Results: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). Conclusion: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.

Effect of Xenogeneic Substances on the Glycan Profiles and Electrophysiological Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Yong Guk, Kim;Jun Ho Yun;Ji Won Park;Dabin Seong;Su-hae Lee;Ki Dae Park;Hyang-Ae Lee;Misun Park
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.281-292
    • /
    • 2023
  • Background and Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. Methods and Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring-mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. Conclusions: To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.

Effect of Various Pathological Conditions on Nitric Oxide Level and L-Citrulline Uptake in Motor Neuron-Like (NSC-34) Cell Lines

  • Shashi Gautam;Sana Latif;Young-Sook Kang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.154-161
    • /
    • 2024
  • Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that causes progressive paralysis. L-Citrulline is a nonessential neutral amino acid produced by L-arginine via nitric oxide synthase (NOS). According to previous studies, the pathogenesis of ALS entails glutamate toxicity, oxidative stress, protein misfolding, and neurofilament disruption. In addition, L-citrulline prevents neuronal cell death in brain ischemia; therefore, we investigated the change in the transport of L-citrulline under various pathological conditions in a cell line model of ALS. We examined the uptake of [14C]L-citrulline in wild-type (hSOD1wt/WT) and mutant NSC-34/ SOD1G93A (MT) cell lines. The cell viability was determined via MTT assay. A transport study was performed to determine the uptake of [14C]L-citrulline. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to determine the expression levels of rat large neutral amino acid transported 1 (rLAT1) in ALS cell lines. Nitric oxide (NO) assay was performed using Griess reagent. L-Citrulline had a restorative effect on glutamate induced cell death, and increased [14C]L-citrulline uptake and mRNA levels of the large neutral amino acid transporter (LAT1) in the glutamate-treated ALS disease model (MT). NO levels increased significantly when MT cells were pretreated with glutamate for 24 h and restored by co-treatment with L-citrulline. Co-treatment of MT cells with L-arginine, an NO donor, increased NO levels. NSC-34 cells exposed to high glucose conditions showed a significant increase in [14C]L-citrulline uptake and LAT1 mRNA expression levels, which were restored to normal levels upon co-treatment with unlabeled L-citrulline. In contrast, exposure of the MT cell line to tumor necrosis factor alpha, lipopolysaccharides, and hypertonic condition decreased the uptake significantly which was restored to the normal level by co-treating with unlabeled L-citrulline. L-Citrulline can restore NO levels and cellular uptake in ALS-affected cells with glutamate cytotoxicity, pro-inflammatory cytokines, or other pathological states, suggesting that L-citrulline supplementation in ALS may play a key role in providing neuroprotection.

Transcription Factor E2F7 Hampers the Killing Effect of NK Cells against Colorectal Cancer Cells via Activating RAD18 Transcription

  • Bingdong Jiang;Binghua Yan;Hengjin Yang;He Geng;Peng Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.920-929
    • /
    • 2024
  • As a pivotal defensive line against multitudinous malignant tumors, natural killer (NK) cells exist in the tumor microenvironment (TME). RAD18 E3 Ubiquitin Protein Ligase (RAD18) has been reported to foster the malignant progression of multiple cancers, but its effect on NK function has not been mined. Here, the study was designed to mine the mechanism by which RAD18 regulates the killing effect of NK cells on colorectal cancer (CRC) cells. Expression of E2F Transcription Factor 7 (E2F7) and RAD18 in CRC tissues, their correlation, binding sites, and RAD18 enrichment pathway were analyzed by bioinformatics. Expression of E2F7 and RAD18 in cells was assayed by qRT-PCR and western blot. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) assay verified the regulatory relationship between E2F7 and RAD18. CCK-8 assay was utilized to assay cell viability, colony formation assay to detect cell proliferation, lactate dehydrogenase (LDH) test to assay NK cell cytotoxicity, ELISA to assay levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and immunofluorescence to detect expression of toxic molecules perforin and granzyme B. High expression of RAD18 and E2F7 was found in CRC tissues and cells. Silencing RAD18 could hamper the proliferation of CRC cells, foster viability and cytotoxicity of NK cells, and increase the secretion of GM-CSF, TNF-α, IFN-γ as well as the expression of perforin and granzyme B. Additionally, ChIP and dual-luciferase reporter assay ascertained the binding relationship between RAD18 promoter region and E2F7. E2F7 could activate the transcription of RAD18, and silencing RAD18 reversed the inhibitory effect of E2F7 overexpression on NK cell killing. This work clarified the inhibitory effect of the E2F7/RAD18 axis on NK cell killing in CRC, and proffered a new direction for immunotherapy of CRC in targeted immune microenvironment.