• 제목/요약/키워드: high yield

검색결과 6,389건 처리시간 0.268초

Selection of early maturing rice varieties suitable for early cropping before Alisma plantago (택사 앞작물 재배에 적응한 벼품종 선발)

  • 권병선;현규환;신정식;신동영
    • Korean Journal of Plant Resources
    • /
    • 제15권2호
    • /
    • pp.123-127
    • /
    • 2002
  • In order to obtain basic informations for selecting early maturing rice varieties which is suitable for early cropping before Alisma plantago in the southern part of Korea. Eleven rice varieties were grown from May to September in 1999∼2001 at Sunchon Youngieon Experiment Field and yield components and yield of plants were investingated. Early maturing rice cv. Jinbubyeo showed higher rough rice yield than any other varieties used in the experiment. It showed high yield components, culm length, panicle length, number of panicles per plant, number of spikelets per panicle and ratio of ripened grains. therefore, it was concluded that Jinbubyeo was the most suitable variety with high yield for the cultivation before Alisma plantago at the southern part of Korea. The heritability of culm length number of spikelets per panicle and rough rice yield were high and that of panicle length number of panicle per plant, ratio of ripened grain and 1,000 grain wt. of milled rice were low. The rough rice yield showed highly significant positive correlations with culm length, panicle length, number of spikelets per panicles and ratio of ripened grains.

The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood (참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향)

  • 박승영;최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제33권3호
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

Bridging Research and Extension Gaps of Paddy Yield in Andhra Pradesh, India

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • 제10권1호
    • /
    • pp.1-15
    • /
    • 2018
  • Many paddy cultivating farmers in the country are forced to use their limited resources to produce adequate food for their family, leading to the degradation and reduction in potential of these resources. The yield levels of paddy at the farmers' level and in the Front Line Demonstrations (FLDs) conducted in the farmers' fields is not at par with potential yield of the paddy variety. The gap between potential yield of crop variety and yield realized in FLDs refers to Research gap and the yield gap between FLDs and due to farmers' practice refers to Extension gap. The earlier studies conducted in India in general and in Andhra Pradesh in particular highlighted the existence of both research and extension gaps with reference to paddy. It is essential that, the narrowing of both research and extension gaps is not static, but dynamic considering the influence of technological interventions in boosting paddy yields at FLDs level and at farmers' level and also with the improvement of the yield potential of paddy varieties. This calls for integrated and holistic approaches to address these two gaps and with this background, the researcher aimed at this in depth study. The findings revealed that, research gaps are high with reference to weed management and pest management and extension gaps are high with reference to farm mechanization followed by fertilizer management. Reliable source of seed, capital use and frequency of meetings with Scientists or Agricultural Officers significantly influence the extension gaps in paddy. Farmers also prioritized socio-economic and technical constraints and the analysis infers that, it is high time now for the farmers to adopt the planned technological interventions on scientific scale to minimize the extension gaps to the extent possible. As the enabling environment in the State of Andhra Pradesh is highly encouraging for the farmers with relevant policy instruments in the form of subsidized inputs, free power, credit at concessional rates of interest, constructing irrigation projects etc., the adoption of the proposed technological interventions significantly contribute to minimizing both research and extension gaps in paddy cultivation in Kurnool district of Andhra Pradesh.

Breeding of 'Jinmani' Cultivar of Gomchwi with Disease Resistance, High Quality and Yield

  • Jong Taek Suh;Ki Deog Kim;Jong Nam Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.18-18
    • /
    • 2021
  • Gomchwi using stuffed leaves is many cultivated for 'Gondalbi(Ligularia stenocephala)' among Gomchwi species. 'Gondalbi' species like to be cultivation on farm because of low the incense and the bitter taste, and high yield. But 'Gondalbi' caused to curtail yield that susceptibility of powdery mildew disease and shriveling and death of plant on summer season. To solve this problems, we crossed a Gomchwi and 'Handeari-gomchwi' to have resistance of powdery mildew disease and high yield. A new Gomchwi cultivar 'Jinmani' was bred by crossing between Gomchwi (Ligularia fischeri (Ledeb.) Turcz.) and Handaeri-gomchwi (Ligularia fischeri var. spiciformis Nakai). The selection and investigation of growth and yield characteristics were conducted from 2007 to 2020 in field and greenhouse of Highland Agriculture Research Institute, NICS, Rural Development Administration. The color of petiole ear was purple. trichome of petiole and leaf back non-existed, and luster of leaf back existed. Density of leaf vein was 4 degree among 1-5 degree in a newly developed cultivar 'Jinmani'. Plant height, leaf length, leaf width and petiole length were 55.7, 21.8, 22.2, and 33.9 cm, respectively in the 2nd year of growth characteristics. Plant size was similar with that of 'Gommany'. Bolting and flowering time were Aug. 5 and Sept. 5, respectively, and Bolting and flowering time of 'Gommany' showed similar to Aug. 8 and Sept. 1, respectively. 'Jinmani' showed higher number of leaves (202 ea.) per plant compared to 'Gommany' (159 ea.). Furthermore, yield was 67.9% higher in 'Jinmani' (2,569 g/plant) than in 'Gommany' (1,530 g/plant). 'Jinmani' showed lower leaf thickness (0.66mm) than 'Gommany' (0.69 mm), and consequently showed more hardness in leaf characteristics (25.1 kg/2) compared to 'Gommany' (24.3kg/cm2). 'Jinmani' showed similar strong resistance compared to 'Gommany' in the susceptibility of powdery mildew disease.

  • PDF

Reliable preparation of [11C]GR205171, a selective NK1 radioligands for noninvasive imaging

  • Park, Jae-kyung;Cho, Young Jin;Lee, Sang-Yoon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • 제5권2호
    • /
    • pp.158-162
    • /
    • 2019
  • [11C]GR205171, a Neurokinin 1 (NK1) radioligand, has been known as such a promising PET probe for quantitation of NK1 receptors in the brain by positron emission tomography (PET) imaging. First trial to synthesis of [11C]GR205171 was to use methylene chloride and tetrabutylammonium hydroxide for preactivation of precursor, but the result was not successful in radiochemical yield (0~25%) and unreliable. 7 years later, inorganic base (Cs2CO3) was tried to achieve higher radiochemical yield, and they showed higher yield (~53%). We have tried to repeat the same synthesis method, but it did not work properly, because there were the lack of the detail procedure and still reproducibility in radiochemical yield. Here we report the improved synthesis protocol to produce [11C]GR205171 in high yield via commercial automated synthesizer. The sonicator which combines water heating bath was used to activate desmethyl-GR205171, and this method showed high efficiency and reasonable yields (4.7 ± 0.6%, non-decay corrected from molecular sieve trap) with >95% radiochemical purity.

Microstructure and High-Cycle Fatigue Properties of High-Speed-Extruded Mg-5Bi-3Al Alloy (Mg-5Bi-3Al 마그네슘 고속 압출재의 미세조직과 고주기피로 특성)

  • Cha, J.W.;Jin, S.C.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • 제31권5호
    • /
    • pp.253-260
    • /
    • 2022
  • In this study, the microstructural characteristics of a high-speed-extruded Mg-5Bi-3Al (BA53) alloy and its tensile, compressive, and high-cycle fatigue properties are investigated. The BA53 alloy is successfully extruded at a die-exit speed of 16.6 m/min without any hot cracking using a large-scale extruder for mass production. The homogenized BA53 billet has a large grain size of ~900 ㎛ and it contains fine and coarse Mg3Bi2 particles. The extruded BA53 alloy has a fully recrystallized microstructure with an average grain size of 33.8 ㎛ owing to the occurrence of complete dynamic recrystallization during high-speed extrusion. In addition, the extruded BA53 alloy contains numerous fine lath-type Mg3Bi2 particles, which are formed through static precipitation during air cooling after exiting the extrusion die. The extruded BA53 alloy has a high tensile yield strength of 175.1 MPa and ultimate tensile strength of 244.4 MPa, which are mainly attributed to the relative fine grain size and numerous fine particles. The compressive yield strength (93.4 MPa) of the extruded BA53 alloy is lower than its tensile yield strength, resulting in a tension-compression yield asymmetry of 0.53. High-cycle fatigue test results reveal that the extruded BA53 alloy has a fatigue strength of 110 MPa and fatigue cracks initiate at the surface of fatigue test specimens, indicating that the Mg3Bi2 particles do not act as fatigue crack initiation sites. Furthermore, the extruded BA53 alloy exhibits a higher fatigue ratio of 0.45 than other commercial extruded Mg-Al-Zn-based alloys.

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • 제43권2호
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

Growth Characters and Yield of Wheat Species Depend on Soil Fertility in Paddy Field (논토양 비옥도에 따른 맥류 초종별 생육특성과 수량성)

  • Ju, Jung-Il;Lee, Hee-Bong;Han, Ouk-Kyu;Song, Tae-Hwa;Ji, Hee-Chung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • 제31권4호
    • /
    • pp.345-352
    • /
    • 2011
  • Soil fertility different depend on application rate of manure and compost for many years. While each crop has different adaptability depend on soil fertility, crop and species or varieties should be chosen depending on the adaptability and productivity. These experiments were carried out to compare the five winter cereal crops for whole crop silage on growth, yield and feed value as affected by soil organic content. The rate of increase on no. of spikes at high fertile soil compared with medium fertile soil was sequently high Samhan (Oat's variety) > Cheongwoo (Wheat) > Gogu (Rye) > Youngyang (Barley) > Shinyoung (Triticale). The rate of decrease at low fertile soil compared with medium fertile soil was sequently high Youngyang > Gogu > Cheongwoo > Shinyoung > Samhan. The triticale was lower variation of no. of spikes as affected by soil organic content than that of other winter cereals. The variations of dry matter yield as affected by soil fertility was higher oat and barley and lower triticale. Forage yield of triticale was higher about 69 percent than that of barley at low fertile soil. Forage yield was the highest in triticale and the lowest in rye in all soil fertility. In high fertile soil, rate of increasing digestible dry matter (DDM) yield compared with medium fertile was high in Samhan and Youngyang. Rate of reduced DDM yield in low fertile soil compared with medium fertile was low in Shinyoung and Cheongwoo.