• Title/Summary/Keyword: high voltage discharge plasma

Search Result 223, Processing Time 0.028 seconds

Toluene Removal Using Surface Discharge Induced Plasma Chemical Process (연면방전 플라즈마를 이용한 톨루엔 처리에 관한 연구)

  • 부문자;봉춘근;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.4
    • /
    • pp.297-305
    • /
    • 1997
  • The experimental study by use of SPCP was fulfilled to remove toluene emitted from various industrial processes. First of all, discharge characteristic was experimented as the change of applied voltage and frequency. Then toluene removal characteristic was tested with the analysis of by-products. As a result, optimum electrical discharge condition was from 20.0 kHz to 25.0 kHz of frequency and from 3.5 kV to 4.0 kV of voltage range. The variation of applied voltage had a more important effect on the removal characteristic of toluene than the frequency variation. The toluene removal efficiency was proportioned to ozone concentration and retention time on discharge plate. It was dropped as increase of toluene concentration, but total treated volume of tolene per power consumption was high. The decomposed toluene was transformed to $CO, CO_2$ and particulates, and the rate of transformation to particulates was higher than CO and $CO_2$ at high toluene concentration. Particulates were increased from 0.017 $\mum$ to 0.3 $\mum$ range of size distribution.

  • PDF

Realization of High Luminous Efficacy PDP with Low Voltage Driving

  • Whang, Ki-Woong;Bae, Hyun-Sook;Jung, Hae-Yoon;Kwon, O-Hyung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.153-156
    • /
    • 2008
  • The use of high Xe content gas is a powerful method for improving the discharge efficacy in PDP, but the accompanying high driving voltage prevents it from being used aggressively. In this paper, we tried to find a method to lower the driving voltage under high Xe gas condition with a new protecting layer. The effective secondary electron emission caused by Xe ions can result in the low voltage driving in panels with high Xe content gas and more importantly high luminous efficacy which were confirmed with the computer simulation and panel experiment.

  • PDF

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.

Development of a Plasma Training Lab kart: System Setup and Numerical Simulation

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.195-200
    • /
    • 2017
  • A mobile lab kart for plasma training is developed with a high vacuum pumping system, vacuum gauges and a glass discharge tube powered by a high voltage transformer connected to a household 60 Hz line. A numerical model is developed by using a commercial multiphysics software package, CFD-ACE+ to analyze the experimental data. Simulations for argon and nitrogen were carried out to provide fundamental discharge characteristics. Variations of the kart configuration were demonstrated: a glass tube with three electric probes, optical emission spectrometer attachment and infra red thermal imaging system to give more detailed analysis of the discharge characteristics.

Improved Dual-Path Energy Recovery Circuit using a Current Source and a Voltage Source for High Resolution and Large-Sized Plasma Display Panel

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.544-546
    • /
    • 2008
  • An improved dual-path energy recovery circuit (ERC) using a current source and a voltage source for plasma display panel (PDP) is proposed. The proposed ERC uses the voltage source to charge a panel and the current source to discharge the panel. Thus, the proposed circuit can make the panel charge to $V_S$ and discharge to 0V, fully and it is possible to achieve zero voltage switching (ZVS) of all switches in H-bridge inverter and zero current switching (ZCS) of all switches in the ERC. Moreover, it has less conduction and switching loss in ERC devices by the dual energy recovery paths for charging and discharging the panel. Furthermore, it has features of canceling the gas discharge current, high performance and the low cost ERC components. The operation principle and features of the proposed ERC are presented in detail and verified with 42-inch SD PDP.

  • PDF

E. coli Disinfection Using a Multi Plasma Reactor (멀티 플라즈마 반응기를 이용한 E. coli 소독)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.

A Study of LCD Panel Cleaning Effect of Plasma Generation Power Source (플라즈마 발생용 전원장치의 LCD 패널 세정효과에 관한 연구)

  • Kim, Gyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.44-51
    • /
    • 2008
  • UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-Barrier Discharges (DBDs), also referred to as barrier discharges or silent discharges have been exclusively related to ozone generation for a long time. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The 3-phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, hi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

A study on non-thermal plasma reactor for generation of negative ions (음이온 발생을 위한 저온 플라즈마 반응기 개발에 관한 연구)

  • Yu, Guang-Xun;Chae, Jae-Ou;Kim, Woo-Hyung;Wei, Wei;Wang, Hui
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2344-2347
    • /
    • 2007
  • To generate negative ion, a small dielectric barrier discharge (DBD) plasma reactor was used in this study and operated by high AC voltage. With increasing of voltage, we can get more negative ions. However unfortunately, if the input voltage is too high, it will also cause formation of ozone which is very harmful to human being health. So the work of finding out the best condition of Voltage and frequency was carried out firstly. After several times of measurement, operating at 20 kHz frequency is the best condition generating high ion concentration without ozone. For the purpose of finding out the best reactor structure, two types of surface dielectric barrier discharge (DBD) reactors were examined to produce negative oxygen ions at the conditions of 20 kHz frequency. The results indicated that the surface DBD reactor with several small tips showed better characteristics for generation of negative oxygen ions at the same condition.

  • PDF

New PDP cell structure for high luminous efficacy with low voltage driving

  • Jung, Hae-Yoon;Kim, Tae-Jun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.480-484
    • /
    • 2006
  • We propose a new PDP cell structure named DIDE (Dual Ignition Discharge Electrodes) structure with a long electrode gap to realize a high luminous efficacy. Suggested DIDE structure basically has a long electrode gap $(200{\mu}m{\sim}400{\mu}m)$, nevertheless, because of auxiliary electrodes formed on the front panel, can be driven at relatively low voltage. The discharge characteristic of DIDE structure was much different from that of conventional structure, which was analyzed by IR emission images using IICCD (Image Intensified Charge Coupled Device). The study can explain some particular characteristics of DIDE structure. As a result, the long electrode gap and low voltage effect can be expected in DIDE structure, and a very high luminous efficacy of 7.5 lm/W has been achieved in monochrome green test panel adopting the new cell structure with Ne-Xe (12%) mixture at 400 torr.

  • PDF

Discharge analysis of SrO- and SrCaO-PDP operated at lower voltage

  • Uchida, G.;Uchida, S.;Yano, T.;Awaji, N.;Kajiyama, H.;Shinoda, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.177-180
    • /
    • 2009
  • Here is presented the measurement on SrO- and SrCaO-PDP operated at lower voltage. SrO- and SrCaO-PDP attain high luminous efficacy at low voltage, where the breakdown voltage is 30 % lower than that of the ordinary MgO-PDP. A one-dimensional fluid model is applied for the simulation of PDP discharge. High VUV radiation efficiency is confirmed at high ${\gamma}_i$ and both low and high $V_s$ as in the experiment. Discharge analysis in simulation also shows that the high ${\gamma}_i$ protective layer leads to high plasma density especially near the cathode electrode, being responsible for high efficiency.

  • PDF