• Title/Summary/Keyword: high voltage

Search Result 10,497, Processing Time 0.034 seconds

High Voltage Wiring System Evaluation Methode of FCEV (Fuel Cell Electric Vehicle) (수소연료전지 자동차용 고전압 배선 시스템 평가 기술 개발)

  • Lim, Ji-Seon;Lee, Jeong-Hun;Lee, Hyo-Jeong;Na, Joo-Ran
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.330-336
    • /
    • 2012
  • FCEV uses 250 ~ 450 V instead of using 12 V battery. High voltage vehicle can cause electric shock, fire and explosion accident. Therefore, it has potential factors that can cause hazard of safety for users. United states of America and Europe legislate regulations such as ECE R100, FMVSS 305 for regulating electrical safety during driving or after collision. The company manufacturing high voltage components must do advanced R&D about Method for improving and confirming the safety of high voltage. We develop the specific hardware components of high voltage wiring system for the power train system and power supply system of Hyundai Motors FCEV. This paper shows test method of insulative performance for securing the electrical safety of high voltage components such as power cable, connectors and buss-bar, and proposals the guide line value for human safety of FCEV according to the test result of our development components.

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

High-Efficiency and High-Power-Density 3-Level LLC Resonant Converter (고효율 및 고전력밀도 3-레벨 LLC 공진형 컨버터)

  • Gu, Hyun-Su;Kim, Hyo-Hoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.153-160
    • /
    • 2018
  • Recent trends in high-power-density applications have highlighted the importance of designing power converters with high-frequency operation. However, conventional LLC resonant converters present limitations in terms of high-frequency driving due to switching losses during the turn-off period. Switching losses are caused by the overlap of the voltage and current during this period, and can be decreased by reducing the switch voltage. In turn, the switch voltage can be reduced through a series connection of four switches, and additional circuitry is essential for balancing the voltage of each switch. In this work, a three-level LLC resonant converter that can operate at high frequency is proposed by reducing switch losses and balancing the voltages of all switches with only one capacitor. The voltage-balancing principle of the proposed circuit can be extended to n-level converters, which further reduces the switch voltage stress. As a result, the proposed circuit is applicable to high-input applications. To confirm the validity of the proposed circuit, theoretical analysis and experimental verification results from a 350 W-rated prototype are presented.

Partial Discharge Characteristics in LLDPE-Natural Rubber Blends: Correlating Electrical Quantities with Surface Degradation

  • Aulia, Aulia;Ahmad, Mohd Hafizi;Abdul-Malek, Zulkurnain;Arief, Yanuar Z.;Lau, KwanYiew;Novizon, Novizon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.699-706
    • /
    • 2016
  • Partial discharges (PD) lead to the degradation of high voltage cables and accessories. PD activities occur due to the existence of impurities, voids, contaminants, defects and protrusions during the manufacture and installation of power cables. Commonly, insulation failures occur at cable joints and terminations, caused by inhomogeneous electric field distributions. In this work, a blend of natural rubber (NR) and linear low density polyethylene (LLDPE) was investigated, and the optimal formulation of the blend that could resist PD was discussed. The experiments were conducted under a constant high voltage stress test of 6.5 kV AC and the magnitude of partial discharge activities was recorded using the CIGRE method II. Pattern analysis of PD signals was performed along with the interpretation of morphological changes. The results showed that the addition of 10 wt% of NR and 5 wt% of Alumina Trihydrate (ATH) provided promising results in resisting PD activities. However, as the NR content increased, more micropores existed, thus resulting in increased PD activities within the samples.

Compensation of the secondary voltage of a coupling capacitor voltage transformer in the time-domain (히스테리시스 특성을 고려한 CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kim, Yeon-Hee;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.266-267
    • /
    • 2006
  • A coupling capacitor voltage transformer (CCVT) is used in extra high voltage and ultra high voltage transmission systems to obtain the standard low voltage signal for protection and measurement. To obtain the high accuracy at the power system frequency, a tuning reactor is connected between a capacitor and a voltage transformer (VT). Thus, no distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has some errors due to the transient components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of the CCVT in the time domain. With the values of the secondary voltage of the CCVT, the secondary and the primary currents are obtained; then the voltage across the capacitor and the tuning reactoris calculated and then added to the measured secondary voltage. The proposed algorithm includes the effect of the non-linear characteristic of the VT and the influence of the ferro-resonance suppression circuit. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle and the fault impedance.

  • PDF

The Optimal Design of Field Ring for Reliability and Realization of 3.3 kV Power Devices (3.3 kV 이상의 전력반도체 소자 구현 및 신뢰성 향상을 위한 필드링 최적 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.148-151
    • /
    • 2017
  • This research concerns field rings for 3.3kV planar gate power insulated-gate bipolar transistors (IGBTs). We design an optimal field ring for a 3.3kV power IGBT and analyze its electrical characteristics according to field ring parameters. Based on this background, we obtained 3.3kV high breakdown voltage and a 2.9V on state voltage drop. To obtain high breakdown voltage, we confirmed that the field ring count was 23, and we obtained optimal parameters. The gap distance between field rings $13{\mu}m$ and the field ring width was $5{\mu}m$. This design technology will be adapted to field stop IGBTs and super junction IGBTs. The thyristor device for a power conversion switch will be replaced with a super high voltage power IGBT.

Voltage Regulation Method Considering Load Variation Characteristics of High and Low Voltage Distribution Line in Distribution System (시간 불일치성을 고려한 배전계통 전압조정방법)

  • Kim, T.E.;Kim, C.S.;Kim, J.E.;Son, J.M.;Park, J.K.;Rho, D.S.;Kim, K.H.;Cho, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.115-117
    • /
    • 2002
  • In general, it is supposed that load characteristics of high and low voltage distribution line are always coincidence. But in practical distribution system, voltage variation characteristics of high and low voltage distribution line are not same. Then in this paper, we proposes a voltage regulation method considering load variation characteristics of high and low voltage distribution line in distribution system.

  • PDF

Robust Control against Voltage Source Variation for PWM Converters of the High Speed Traction (고속철도 차량용 PWM 컨버터의 전원전압 변동에 강인한 제어)

  • Park, Byoung-Gun;Lee, Woo-Cheol;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1271-1278
    • /
    • 2010
  • High-speed traction has voltage source variation because the electric power of tractions is supplied by difference traction power system according to operating section. This paper proposes the robust control maintaining constant output performance against voltage source variation for PWM converters of the high speed traction. The proposed scheme consists of feed-forward compensation for current controller by on-line calculating the rms voltage of voltage source. Total dynamic performance of high speed traction can be improved by the reduction of the output voltage ripple which is resulted from voltage source sag and variation. The superior performance and validity of the proposed scheme is proved through the simulation.

  • PDF

The Optimal Design of Super High Voltage Planar Gate NPT IGBT (대용량 전력변환용 초고전압 NPT IGBT 최적화 설계에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.490-495
    • /
    • 2015
  • This paper was proposed the theoretical research and optimal design 3,000 V IGBT for using electrical automotive, high speed train and first power conversion. To obtaining 3,000 V breakdown voltage, the design parameters was showed $160{\Omega}{\cdot}cm$ resistivity and $430{\mu}m$ drift length. And to maintain 5 V threshold voltage, we obtained $6.5{\times}10^{13}cm^{-2}$ p-base dose. We confirmed $24{\mu}m$ cell pitch for maintain optimal on state voltage drop and thermal characteristics. This 3,000 V IGBT was replaced to thyristor devices using first power conversion and high speed train, presently.