• Title/Summary/Keyword: high viability

Search Result 886, Processing Time 0.024 seconds

Protective Effects of Kaempferol and Quercetin on Oxidative Stress in CPAE Cell (CPAE 세포를 이용한 Kaempferol과 Quercetin의 산화스트레스 극복효과)

  • Park, Shin-Young
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.395-401
    • /
    • 2008
  • Flavonoids are ubiquitous substances in fruits and vegetables. A main subgroup of the flavonoids are the flavonols, of which quercetin and kaempferol are the major representatives in foods. They are used in food supplements at high doses, because of their preventive effects on degenerative diseases. The aim of this study was to determine the combined and separate effects of kaempferol and quercetin on oxidative stress in cow pulmonary artery endothelium (CPAE) cells over a broad concentration range. The results demonstrate that cell viability was greatly increased in kaempferol and quercetin treated cells whether $H_{2}O_{2}$-treated or not. Cell viability also increased when treated with flavonols in the absence of oxidative stress. Both preincubation and simultaneous incubation with kaempferol and quercetin protected against the loss of cell viability induced by 1mM $H_{2}O_{2}(5h)$. Protective effects of flavonols against oxidative stress were shown to depend on the treated flavonol concentrations. No protective effect was shown under low concentration treatment and cell viability increased 1.6 times at $200{\mu}M$ relative to the control group. At the highest flavonol concentration of $300{\mu}M$, the increased cell viability by flavonol treatment was decreased to almost half of the maximum values. Combined treatments with kaempferol and quercetin showed more protective effects against oxidative stress by $H_{2}O_{2}$ than the separate effects of each flavonol. In conclusion, the protective effect of kaempferol and quercetin against oxidative stress was very pronounced but high concentrations of flavonols can also induce cell cytotoxicity.

Anti-angiogenic Effects of Shiquandabutang (십전대보탕(十全大補湯)이 혈관신생(血管新生) 억제(抑制)에 미치는 효과(效果))

  • Cui, Xun;Kang, Hee;Shim, Bum-Sang;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok
    • Journal of Korean Traditional Oncology
    • /
    • v.11 no.1
    • /
    • pp.119-134
    • /
    • 2006
  • Shiquandabutang is very famous prescription for tonifying vital energy. We examined the anti-metatstastic effect of Shiquandabutang with in vitro invasion assay model. We performed the following experiments and the results are listed below:Cell viability assay was carried to determine the dose of Shiquandabutang. At lower dose under 200 ${\mu}g/m{\ell}$ (89.6%) viability was very high. But, viability downed as dose grows. At the dose of 600 ${\mu}g/m{\ell}$ (54.2%) viability was almost half of that of control. And at high dose of 1000 ${\mu}g/m{\ell}$ (15.8%) viability was very pure. In BrdU incorporation assay, Shiquandabutang treated groups showed the decreased DNA synthesis rate compared with control group.(200 ${\mu}g/m{\ell}$ (64.4%), 400 ${\mu}g/m{\ell}$ (7.3%)) The results of gelatinase assay showed that Shiquandabutang decreases the gelatinolytic activity of MMP-9. We examined tube formation assay and the result was that Shiquandabutang ihhibits the tube formation at the dose of 200 ${\mu}g/m{\ell}$ and 400 ${\mu}g/m{\ell}$. We examined rat aortic ring assay and the result was that Shiquandabutang ihhibits the angiogenesis of the rat aortic ring at the dose of 400 ${\mu}g/m{\ell}$. From our research, part of the mechanism underlying anti-metastastic effect of Shiquandabutang was proven in vitro. Moreover, we knew that Shiquandabutang is more effectively inhibits the angiogenesis at high dose.

  • PDF

Characteristics of Eggshell Powder as Carriers of Probiotics (생균제의 부형제(운반체)로서의 난각분말의 특성)

  • Lee, Woo-Do;Niu, Kai-Min;Lim, Jeong-Min;Yi, Kwon-Jung;Lee, Bong-Joo;Kim, Kang-Woong;Kim, Kyoung-Duck;Hur, Sang-Woo;Han, Hyon-Sob;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Eggshell (ES) is a by-product of table eggs with high content of calcium carbonate which can be used as a calcium source in feed. In this study, we have first illuminated the potential application of ES as a novel carrier for probiotics. The carriers used in the study include a SBM (Soybean meal), ESL (Eggshell powder with large particles), ESF (Eggshell powder with fine particles), and the complex carriers (SBM+ESL, SBM+ESF). The structure of carriers absorbed by L. plantarum was confirmed by SEM image. Among these carriers, the complex carrier SBM+ESF showed the highest viability of L. plantarum with pH 7~8 during four weeks storage at room temperature. The SBM+ESF was further tested as a carrier for various probiotic strains at $4^{\circ}C$ or $30^{\circ}C$. All the probiotic strains showed high viability at $4^{\circ}C$ storage. However, a significant reduction of Lactobacillus cells was observed at $30^{\circ}C$ storage. B. lichenifomis maintained high viability whereas B. subtilis, B. amyloliquefaciens, and S. cerevisiae showed the reduction of $2{\log}_{10}$ (CFU/g). These results suggest that if the ESF as a calcium source in feed was mixed with SBM, it can be used as an effective complex carrier for improving the viability of some probiotics including B. licheniformis.

Padina arborescens extract protects high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress

  • Park, Mi Hwa;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.494-500
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic ${\beta}$ cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS: Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 proteins in INS-1 cells were evaluated by western blot analysis, and apoptosis/necrosis induced by high glucose was determined by analysis of FITC-Annexin V/PI staining. RESULTS: Treatment with high concentrations of glucose induced INS-1 cell death, but PAE at concentrations of 25, 50 or $100{\mu}g/ml$ significantly increased cell viability. The treatment with PAE dose dependently reduced the lipid peroxidation and increased the activities of antioxidant enzymes reduced by 30 mM glucose, while intracellular ROS levels increased under conditions of 30 mM glucose. PAE treatment improved the secretory responsiveness following stimulation with glucose. The results also demonstrated that glucotoxicity-induced apoptosis is associated with modulation of the Bax/Bcl-2 ratio. When INS-1 cells were stained with Annexin V/PI, we found that PAE reduced apoptosis by glucotoxicity. CONCLUSIONS: In conclusion, the present study indicates that PAE protects against high glucose-induced apoptosis in pancreatic ${\beta}$ cells by reducing oxidative stress.

Production of Lyopilized Culture of Lactobacillus acidophilus with Preserving Cell Viability

  • Kang, Moo-Heon;Vibhor Saraswat;Lee, Jeewon;Park, Young-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 1999
  • Optimal lyophilization process was developed for manufacturing the dried product of Lactobacillus acidophilus with high cell viability. Three major factors, freezing rate, specific surface area of samples, and stabilizer type and their synergy were shown to play a crucial role in the development of an effective lyophilization process. Finally we found an optimal combination among three process parameters mentioned above; an exceptionally high cell survival percentage of 90% was achieved using the 8.28 cm-1 specific surface area of samples, slow freezing rate, and a stabilizer composition of 4% skim milk +1% glycerol +0.1% calcium chloride.

  • PDF

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells

  • Kim, So Hui;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.64-69
    • /
    • 2020
  • Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.

Evaluation of Extended Boar Semen after Glass Wool Filtration (Glass Wool Filtration 후 돼지정액의 평가)

  • Kang, Tae-Young
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.45-48
    • /
    • 2015
  • The purpose of this study was to select high-quality boar semen after the glass wool filtration of extended boar semen. After collecting boar semen, its concentration, morphology, viability, and motility were examined according the glass wool's height and time. After glass wool filtration, the sperm concentration decreased, but the proportion of normal sperms and the sperm viability increased. Nevertheless, the sperm motility showed no changes. The above results showed that the glass wool filtration of boar semen is a method of obtaining sperms with relatively low abnormal rates and high viabilities.

Differences of Water Absorption Property and Seed Viability according to Morphological Characters in Soybean Genotypes

  • Kim, Seok-Hyeon;Kim, Ji-Na;Chung, Jong-Il;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • The impermeable seed coat is valuable trait in soybean because impermeable seed retain viability for longer period than permeable seed under adverse conditions such as delayed harvest or prolonged storage. Soybean seeds of various size showing different seed hardness were examined for their water absorption and seed viability under adverse storage conditions. Of one hundred thirty nine genotypes, eight types of seeds having different seed hardness and seed size were used as material. Soybean genotypes showing high hard seed rate, GSI13125 (89%), GSI10715 (54%), and GSI10284 (42%), were slow in water absorption and low in the electroconductivity of seed leachate in distilled water. Germination of GSI10284 and GSI13125 that have higher hard seed rate was less affected by CSVT and artificial aging treatment indicating higher seed storability. The higher storing ability of both collections was confirmed by electroconductivity test for leachate. GSI10122 showed low seedling emergence when the seeds were artificially aged. This genotype was considered as to having a poor storing ability based on difference of electroconductivity before and after artificial aging. Among tests conducted in the experiment, CSVT could be used for determining storage life in legumes. In conclusion, water absorption property of seed was strongly related to the hardness that is directly related to the seed viability and storing ability in soybean seed.

High-density Cultivation and Cryopreservation of Saccharomyces Hansen CBS5926 (Saccharomyces cerevisiae Hansen CBS5926의 고농도 배양 및 동결건조 보존)

  • Bang, Kyu-Ho;Kim, Gap-Jin;Oh, Deok-Hwan;Rhee, Young-Ha
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.302-306
    • /
    • 1999
  • Production of biomass by fed-batch culture of Saccharomyces cerevisiae Hansen CBS5926, which is used to treat intestinal disorders, was investigated using ethanol as the sole carbon source. Ethanol was a better carbon source than glucose for high cell density culture of the st-rain since it could decrease the frequency of contamination while increasing the efficiency and final productivity of the fermentation process. Under optimal conditions, 38 g/ℓ of dry cell weight with $2.2{\times}10^{9}$ cfu/㎖ of maximum viable cell count was achieved after 72h cultivation. Freeze-drying of the cultured yeast cells resulted in severe reduction of viability. Of the freeze-drying protectants tested, 20% sucrose and 30% lactose were most effective for the preservation of yeast cells with a viability level of 16.3%. A combination of skim milk and lactose with 20% sucrose(w/v) exerted no synergistic influence upo the viability of the cells during cryopreservation by freeze-drying.

  • PDF

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.