Browse > Article
http://dx.doi.org/10.11620/IJOB.2020.45.2.64

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells  

Kim, So Hui (Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University)
Kim, Min Seuk (Department of Oral Physiology and Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University)
Publication Information
International Journal of Oral Biology / v.45, no.2, 2020 , pp. 64-69 More about this Journal
Abstract
Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.
Keywords
Short-chain fatty acids; $Ca^{2+}$ signaling; Pro-inflammatory cytokines; Periodontitis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu X, Shahir AM, Sha J, Feng Z, Eapen B, Nithianantham S, Das B, Karn J, Weinberg A, Bissada NF, Ye F. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi's sarcomaassociated herpesvirus replication. J Virol 2014;88:4466-79. doi: 10.1128/JVI.03326-13.   DOI
2 Cueno ME, Imai K, Matsukawa N, Tsukahara T, Kurita-Ochiai T, Ochiai K. Butyric acid retention in gingival tissue induces oxidative stress in jugular blood mitochondria. Cell Stress Chaperones 2013;18:661-5. doi: 10.1007/s12192-013-0409-z.   DOI
3 Yang G, Chen S, Deng B, Tan C, Deng J, Zhu G, Yin Y, Ren W. Implication of G protein-coupled receptor 43 in intestinal inflammation: a mini-review. Front Immunol 2018;9:1434. doi: 10.3389/fimmu.2018.01434.   DOI
4 Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461:1282-6. doi: 10.1038/nature08530.   DOI
5 Kurita-Ochiai T, Ochiai K, Suzuki N, Otsuka K, Fukushima K. Human gingival fibroblasts rescue butyric acid-induced Tcell apoptosis. Infect Immun 2002;70:2361-7. doi: 10.1128/iai.70.5.2361-2367.2002.   DOI
6 Cueno ME, Ochiai K. Gingival periodontal disease (PD) level-butyric acid affects the systemic blood and brain organ: insights into the systemic inflammation of periodontal disease. Front Immunol 2018;9:1158. doi: 10.3389/fimmu.2018.01158.   DOI
7 Shirasugi M, Nakagawa M, Nishioka K, Yamamoto T, Nakaya T, Kanamura N. Relationship between periodontal disease and butyric acid produced by periodontopathic bacteria. Inflamm Regen 2018;38:23. doi: 10.1186/s41232-018-0081-x.   DOI
8 D'Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, Rottman JB, Labitzke K, Willee A, Beckmann H, Wang Y, Li Y, Schwandner R, Johnston JA, Towne JE, Hsu H. Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses. PLoS One 2017;12:e0180190. doi: 10.1371/journal.pone.0180190.   DOI
9 Mishiro T, Kusunoki R, Otani A, Ansary MM, Tongu M, Harashima N, Yamada T, Sato S, Amano Y, Itoh K, Ishihara S, Kinoshita Y. Butyric acid attenuates intestinal inflammation in murine DSS-induced colitis model via milk fat globule-EGF factor 8. Lab Invest 2013;93:834-43. doi: 10.1038/labinvest.2013.70.   DOI
10 Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM, Bunger MK, Bultman SJ. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011;13:517-26. doi: 10.1016/j.cmet.2011.02.018.   DOI
11 Celasco G, Moro L, Aiello C, Mangano K, Milasi A, Quattrocchi C, DI Marco R. Calcium butyrate: anti-inflammatory effect on experimental colitis in rats and antitumor properties. Biomed Rep 2014;2:559-63. doi: 10.3892/br.2014.273.   DOI
12 Kurita-Ochiai T, Ochiai K. Butyric acid induces apoptosis via oxidative stress in Jurkat T-cells. J Dent Res 2010;89:689-94. doi: 10.1177/0022034510365456.   DOI
13 Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 2014;5:202-7. doi: 10.4161/gmic.27492.   DOI
14 Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 2003;9:347-58. doi: 10.2174/1381612033391973.   DOI
15 Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, Harmsen HJM, Faber KN, Hermoso MA. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019;10:277. doi: 10.3389/fimmu.2019.00277.   DOI
16 Hu S, Dong TS, Dalal SR, Wu F, Bissonnette M, Kwon JH, Chang EB. The microbe-derived short chain fatty acid butyrate targets miRNA-dependent p21 gene expression in human colon cancer. PLoS One 2011;6:e16221. doi: 10.1371/journal.pone.0016221.   DOI
17 Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312-9. doi: 10.1074/jbc.M211609200.   DOI
18 Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, Maruya M, Ian McKenzie C, Hijikata A, Wong C, Binge L, Thorburn AN, Chevalier N, Ang C, Marino E, Robert R, Offermanns S, Teixeira MM, Moore RJ, Flavell RA, Fagarasan S, Mackay CR. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015;6:6734. doi: 10.1038/ncomms7734.   DOI
19 Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003;278:25481-9. doi: 10.1074/jbc.M301403200.   DOI
20 Sina C, Gavrilova O, Forster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Hasler R, Nikolaus S, Folsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 2009;183:7514-22. doi: 10.4049/jimmunol.0900063.   DOI
21 Lu R, Meng H, Gao X, Xu L, Feng X. Effect of non-surgical periodontal treatment on short chain fatty acid levels in gingival crevicular fluid of patients with generalized aggressive periodontitis. J Periodontal Res 2014;49:574-83. doi: 10.1111/jre.12137.   DOI