• Title/Summary/Keyword: high viability

Search Result 894, Processing Time 0.038 seconds

Functional Expression of Choline Transporter-Like Protein 1 in LNCaP Prostate Cancer Cells: A Novel Molecular Target

  • Saiki, Iwao;Yara, Miki;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.195-201
    • /
    • 2020
  • Prostate cancer is one of the most common cancers in men. Choline PET or PET/CT has been used to visualize prostate cancer, and high levels of choline accumulation have been observed in tumors. However, the uptake system for choline and the functional expression of choline transporters in prostate cancer are not completely understood. In this study, the molecular and functional aspects of choline uptake were investigated in the LNCaP prostate cancer cell line along with the correlations between choline uptake and cell viability in drug-treated cells. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed in LNCaP cells. CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. [3H]Choline uptake was mediated by a single Na+-independent, intermediate-affinity transport system in the LNCaP cells. The anticancer drugs, flutamide and bicalutamide, inhibited cell viability and [3H]choline uptake in a concentration-dependent manner. The correlations between the effects of these drugs on cell viability and [3H]choline uptake were significant. Caspase-3/7 activity was significantly increased by both flutamide and bicalutamide. Furthermore, these drugs decreased CTL1 expression in the prostate cancer cell line. These results suggest that CTL1 is functionally expressed in prostate cancer cells and are also involved in abnormal proliferation. Identification of this CTL1-mediated choline transport system in prostate cancer cells provides a potential new therapeutic target for the treatment of this disease.

Analysis of Sperm Ability in Specific Pathogen Free Miniature pig for Production of Bio-Organ

  • Kim T. S.;Cao Y.;Cheong H. T.;Yang B. K.;Park C. K.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.149-154
    • /
    • 2005
  • The purpose of this study was the analysis of sperm ability in Specific Pathogen Free (SPE) miniature pig for production of bio-organ. The collected semen was diluted with extender and stored at $17^{\circ}C$t for up to 7 days. The semen samples were evaluated at 0, 1, 3, 5, and 7 days of storage for analysis of sperm ability. Sperm ability was evaluated by examining viability, progressive motility, sperm abnormality and intensity of the sperm membrane. Also, the semen was processed according to the convenient freezing method, and frozen-thawed sperm was evaluated by examining viability, capacitation and acrosome reaction using chlortetracycline (CTC) staining. Motility of spermatozoa of SPF miniature pig was significantly (P<0.05) lower on 3 days or later compared to the Duroc, Yorkshire and Landrace in domestic boar. The percentage of abnormal spermatozoa of Landrace were significantly (P<0.05) higher than in SPF miniature pig, Duroc and Yorkshire that had a similar percentage on 5 or 7 days of sperm storage. The percentage of spermatozoa with coiled tail decreased during the storage period but there were no significant difference. On the other hand, viability of frozen-thawed spermatozoa had a significantly (P<0.05) lower in SPF miniature pig than in other domestic boars. CTC patterns had no significant difference, but SPF miniature pig had higher percentage of capacitated spermatozoa and lower percentage of acrosome-reacted it than domestic boars. Therefore, this study suggest that it is necessary to develop the suitable extender and freezing methods methods for the high viable rate and fertilizing ability in vitro.

Viability and Functions of Alginate-microencapsulated Islets Isolated from Neonatal Pigs

  • Lin, Yi-Juain;Wang, Jui-Ping;Chung, Yu-Tung;Sun, Yu-Ling;Chou, Yu-Chi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.795-801
    • /
    • 2007
  • Patients with Type I diabetes mellitus have been treated with porcine insulin for several decades and pigs have recently been deemed an ideal source of microencapsulated islet cells for clinical xenotransplantation. In this study, neonatal pigs were anesthetized and sacrificed prior to a pancreatectomy. Islet cells were isolated from pancreas via collagenase digestion. Islet cells were separated and collected by hand under microscopic guidance. These cells were suspended in 1.4% sodium alginate solution and encapsulated by dropping them into 1.1% calcium chloride solution and in which the round gel in size was 250-400 ${\mu}m$ in diameter. Viability of the microencapsulated islet cells cultured in medium at $37^{\circ}C$ was assessed by MTT assay. Furthermore, insulin released in response to glucose challenge was investigated using an enzyme-linked immunosorbent assay. Secretion of insulin was low in response to the basal glucose solution (4.4 mM) in medium and was significantly higher in response to the high glucose solution (16.7 mM). The viability of microencapsulated islet cells did not differ significantly over a period of 7 days; that is, the increasing pattern of insulin concentration in the culture medium after glucose stimulation interval day was similar throughout the 7 days cultivation. In summary, experimental evidences indicated that the effects of alginate-microencapsulation prolonged survival of the neonatal porcine islets in vitro cultures and the insulin response to glucose of the islets was maintained.

In Vitro Radical Scavenging Effect and Neuroprotective Activity from Oxidative Stress of Petasites japonicus (머위 분획물의 In Vitro 라디칼 소거능 및 신경세포의 산화적 스트레스 보호 효과)

  • Wang, Qian;Lee, Ah Young;Choi, Ji Myung;Lee, Dong Gu;Kim, Hyun Young;Lee, Sanghyun;Cho, Eun Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • This study was focused on the evaluation of radical scavenging effect and the protective activity against oxidative stress of the extract and fractions from Petasites japonicus. P. japonicus was extracted with methanol and then fractionated into 4 fractions [n-butanol, ethyl acetate (EtOAc), methylene chloride, and n-hexane]. The extract and fractions showed strong 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Among all the fractions, particularly, the EtOAc fraction showed the strongest effect with the $IC_{50}$ value of $0.02{\mu}g/ml$. In addition, the fractions also showed strong hydroxyl radical scavenging activity and nitric oxide scavenging activity as well. Furthermore, cell viability generated by the P. japonicus extract and 4 fractions were examined under C6 glial cellular model. The C6 glial cells showed high generation of reactive oxygen species (ROS) and decrease in cell viability by the treatment generator of hydrogen peroxide. However, the production of ROS formation was decreased by the treatment of the fractions of P. japonicus and also founded that the EtOAc fraction led to significant increase in the cell viability at concentration $100{\mu}g/ml$. Results from this work indicated that P. japonicus showed protective effects against oxidative stress and its EtOAc fraction may be served as a useful natural antioxidant.

Seed Setting and Viability and Fertility of Pollens in Families of Artificial and Natural Interspecific Hybrids in Lepidobalanus of Genus Quercus (참나무속의 인공 및 자연 종간잡종 가계의 종자결실 및 활력과 화분의 임성)

  • Lee, Jeong-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.290-294
    • /
    • 2007
  • Interspecific hybrid seedlings by artificial crossing of Genus Quercus (Q. serrata, Q. dentata, Q. mongolica var. crispula, Q. aliena) were planted at nursery in Tottori University. Seedlings of hybrids by natural crossing(Q. fabri and $Q.{\times}mccormickii$) were selected and planted at Hiruzen district in Tottori University. Artificial interspecific hybrid $F_1$ and natural hybrid $F_1$ bloomed when they were 4 years old and 3 years old, respectively. The pollen fertility and seed viability were investigated from the bloomed individuals in 2001. The germination percentages of the pollens of artificial interspecific hybrid were more than 84% except one individual, and the extension of pollen tubes was normal. The normal seed percentages of artificial interspecific hybrid were more than 90% similar to parents. Germination percentages of normal seed of natural crossing family were more than 64%, respectively, and selfed offsprings of Q. fabri, and $Q.{\times}mccormickii$ hade high reproductive ability.

Improvement of the Inferior Epigastric Artery Flap Viability Using Adenovirus-mediated VEGF and COMP-angiopoietin-1 (아래쪽배벽동맥피판의 생존향상을 위한 VEGF와 COMP-angiopoietin-1 유전자 치료)

  • Yoo, Eun Kyung;Son, Daegu;Kim, Hyung Tae;Lee, In Kyu;Choi, Taehyun;Kim, Junhyung;Han, Kihwan
    • Archives of Plastic Surgery
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Purpose: Partial necrosis of skin flaps remains a substantial problem in reconstructive surgery. We investigated the potential use of an adenovirus vector encoding the VEGF, COMP-angiopoietin-1 gene in an attempt to promote the viability of the inferior epigastric artery flap in a rat model. Methods: Three by six cm lower abdominal transverse skin flaps, supplied only by the left inferior epigastric artery, were designed. After skin flap elevation, the adenovirus VEGF and adenovirus COMP-angiopoietin-1 were injected into the distal portion of the flap, which has a high tendency of developing flap ischemia. Control animals were injected with the same volume of normal saline. On 3, 7 and 14 days after the flap elevation, the flap survival and vascularization were assessed using Visitrak digital$^{(R)}$, CD31 immunohistochemistry in addition to evaluating the general histological characteristics. Results: There was a significant increase in the mean percentage of flap viability by 89.8%, 91.1% and 94.8% in flaps transfected with adenovirus VEGF, COMP-angiopoietin-1, coadministraion of VEGF and COMP-angiopoietin-1 at seven days, and by 95.6%, 94.8% and 96.3% at 14 days. Histological assessment revealed that there were more blood vessels formed after adenovirus with VEGF, COMP-angiopoietin-1 or VEGF plus COMP-angiopoietin-1 than with adenovirus Lac Z. Conclusion: The results of this study suggest that adenovirus-mediated VEGF, COMP-angiopoietin-1 gene therapy, promote therapeutic angiogenesis in patients that undergo reconstructive procedures.

Efficient In Vitro Labeling Rabbit Bone Marrow-Derived Mesenchymal Stem Cells with SPIO and Differentiating into Neural-Like Cells

  • Zhang, Ruiping;Li, Jing;Li, Jianding;Xie, Jun
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.650-655
    • /
    • 2014
  • Mesenchymal stem cells (MSCs) can differentiate into neural cells to treat nervous system diseases. Magnetic resonance is an ideal means for cell tracking through labeling cells with superparamagnetic iron oxide (SPIO). However, no studies have described the neural differentiation ability of SPIO-labeled MSCs, which is the foundation for cell therapy and cell tracking in vivo. Our results showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) labeled in vitro with SPIO can be induced into neural-like cells without affecting the viability and labeling efficiency. The cellular uptake of SPIO was maintained after labeled BM-MSCs differentiated into neural-like cells, which were the basis for transplanted cells that can be dynamically and non-invasively tracked in vivo by MRI. Moreover, the SPIO-labeled induced neural-like cells showed neural cell morphology and expressed related markers such as NSE, MAP-2. Furthermore, whole-cell patch clamp recording demonstrated that these neural-like cells exhibited electrophysiological properties of neurons. More importantly, there was no significant difference in the cellular viability and $[Ca^{2+}]_i$ between the induced labeled and unlabeled neural-like cells. In this study, we show for the first time that SPIO-labeled MSCs retained their differentiation capacity and could differentiate into neural-like cells with high cell viability and a good cellular state in vitro.

Rare-Mating and Protoplast Fusion for the Improvement of Ethanol Producibility and Cell-Viability of Yeast (효모의 에탄올 생산능 및 세포 생존능의 증진을 위한 Rare-mating과 원형질체 융합)

  • Kang, Tae-Young;Kim, Keun
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.312-316
    • /
    • 2001
  • To improve the ethanol fermentability, four Saccharomyces yeast strains with efficient ethanol fermentability were subjected to rare-mating and protoplast fusion. Using these 4 strains, 5 different combinations of mating-pair or fusion-pair were constructed and their hybrids or fusants were obtained. From the statistical analysis of the results of the ethanol fermentation by the hybrids of the different mating-pair or fusion-pair, no difference was found in ethanol production, but [S. kluveri $khl{\times}S$ cerevisiae cp3] pair was shown to be the best combination which can produce high cell-viability. In fact, the clone No. 3 of the [S. kluveri $khl{\times}S$ cerevisiae cp3] pair was selected as the best strain which produced ethanol of 10.11% (w/v) or 12.81% (v/v) from 25% (w/v) glucose at $33^{\circ}C$ for 3 days with the residual sugar of 3.53% (w/v), viability of 62.65%, fermentation efficiency of 92.2%.

  • PDF

Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells

  • Ko, Eunjeong;Baek, Seungjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • Development and Reproduction
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2020
  • Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).