Browse > Article
http://dx.doi.org/10.5713/ajas.2007.795

Viability and Functions of Alginate-microencapsulated Islets Isolated from Neonatal Pigs  

Lin, Yi-Juain (Division of Biotechnology, Animal Technology Institute Taiwan)
Wang, Jui-Ping (Division of Biotechnology, Animal Technology Institute Taiwan)
Chung, Yu-Tung (Division of Biotechnology, Animal Technology Institute Taiwan)
Sun, Yu-Ling (Division of Biotechnology, Animal Technology Institute Taiwan)
Chou, Yu-Chi (Division of Biotechnology, Animal Technology Institute Taiwan)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.20, no.5, 2007 , pp. 795-801 More about this Journal
Abstract
Patients with Type I diabetes mellitus have been treated with porcine insulin for several decades and pigs have recently been deemed an ideal source of microencapsulated islet cells for clinical xenotransplantation. In this study, neonatal pigs were anesthetized and sacrificed prior to a pancreatectomy. Islet cells were isolated from pancreas via collagenase digestion. Islet cells were separated and collected by hand under microscopic guidance. These cells were suspended in 1.4% sodium alginate solution and encapsulated by dropping them into 1.1% calcium chloride solution and in which the round gel in size was 250-400 ${\mu}m$ in diameter. Viability of the microencapsulated islet cells cultured in medium at $37^{\circ}C$ was assessed by MTT assay. Furthermore, insulin released in response to glucose challenge was investigated using an enzyme-linked immunosorbent assay. Secretion of insulin was low in response to the basal glucose solution (4.4 mM) in medium and was significantly higher in response to the high glucose solution (16.7 mM). The viability of microencapsulated islet cells did not differ significantly over a period of 7 days; that is, the increasing pattern of insulin concentration in the culture medium after glucose stimulation interval day was similar throughout the 7 days cultivation. In summary, experimental evidences indicated that the effects of alginate-microencapsulation prolonged survival of the neonatal porcine islets in vitro cultures and the insulin response to glucose of the islets was maintained.
Keywords
Neonatal Pig; Islet; Microencapsulation; Insulin; Insulin Secretory Responsiveness;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Cardona, K., G. S. Korbutt, Z. Milas, J. Lyon, J. Cano, W. Jiang, H. Bello-Laborn, B. Hacquoil, E. Strobert, S. Gangappa, C. J. Weber, T. C. Pearson, R. V. Rajotte and C. P. Larsen. 2006. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat. Med. 12:304-306.   DOI   ScienceOn
2 Diabetes Control and Complications Trial Research Group. 1993. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. New Eng. J. Med. 329:977-986.   DOI   ScienceOn
3 Krickhahn, M., C. Buhler, T. Meyer, A. Thiede and K. Ulrichs. 2002. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs. Cell Transplan. 11:827-838.
4 Lim, F. and A. M. Sun. 1980. Microencapsulated islets as a bioartificial endocrine pancreas. Sci. 210:908-910.   DOI
5 Monroy, B., J. Honiger, S. Darquy and G. Reach. 1997. Use of polyethyleneglycol for porcine islet cryopreservation. Cell Transplant. 6:613-621.   DOI   ScienceOn
6 Opara, E. C., V. S. Hubbard, W. M. Burch and O. E. Akwari. 1992. Characterization of the insulinotropic potency of polyunsaturated fatty acids. Endocrinol. 130:657-662.   DOI   ScienceOn
7 Panza, J. L., W. R. Wagner, H. L. Rilo, R. H. Rao, E. J. Beckman and A. J. Russell. 2000. Treatment of rat pancreatic islets with reactive PEG. Biomaterials 21:1155-1164.   DOI   ScienceOn
8 Rayat, G. R., R. V. Rajotte and G. S. Korbutt. 1999. Potential application of neonatal porcine islets as treatment for type 1 diabetes: a review. Ann. N. Y. Acad. Sci. 875:175-188.   DOI
9 Ricordi, C., D. W. Gray, B. J. Hering, D. B. Kaufman, G. L. Warnock, N. M. Kneteman, S. P. Lake, N. J. London, C. Socci and R. Alejandro. 1990. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27:185-195.   DOI   ScienceOn
10 Shapiro, A. M. J., J. R. T. Lakey, E. A. Ryan, G. S. Korbutt, E. Toth, G. L. Warnock, N. M. Kneteman and R. V. Rajotte. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid free immunosuppressive regimen. New England J. Med. 343:230-238.   DOI   ScienceOn
11 Ryan, E. A., J. R. T. Lakey, R. V. Rajotte, G. S. Korbutt, T. Kin, S. Imes, A. Rabinovitch, J. F. Elliot, D. Bigam, N. M. Kneteman, G. L. Warnock, I. Larsen and A. M. J. Shapiro. 2001. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton Protocol. Diabetes 50:710-719.   DOI   ScienceOn
12 Ye, Y., M. Niekrasz, S. Kosanke, R. Welsh, H. E. Jordan, J. C. Fox, W. C. Edwards, C. Maxwell and D. K. Cooper. 1994. The pig as a potential organ donor for man. A study of potentially transferable disease from donor pig to recipient man. Transplant. 57:694-703.   DOI   ScienceOn
13 Beattie, G. M., J. S. Rubin, M. I. Mally, T. Otonkoski and A. Hayek. 1996. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 45:1223-1228.   DOI   ScienceOn
14 Brunicardi, F. C. and Y. Mullen. 1994. Issues in clinical islet transplantation. Pancreas 9:281-290.   DOI   ScienceOn
15 Bonner-Weir, S., M. Taneja, G. C. Weir, K. Tatarkiewicz, K. H. Song, A. Sharma and J. J. O'Neil. 2000. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97:7999-8004.   DOI
16 Lacy, P. E., O. D. Hegre, A. Gerasimidi-Vazeou, F. T. Gentile and K. E. Dionne. 1991. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Sci. 254:1782-1784.   DOI
17 Marchetti, P., E. H. Finke, A. Gerasimidi-Vazeou, L. Falqui and D. W. Scharp and P. E. Lacy. 1991. Automated large-scale isolation, in vitro function and xenotransplantation of porcine islets of Langerhans. Transplant. 52:209-213.   DOI   ScienceOn
18 Ryan, E. A., J. R. T. Lakey, B. Paty, S. Imes, G. S. Korbutt, N. M. Kneteman, D. Bigam, R. V. Rajotte and A. M. J. Shapiro. 2002. Successful islet transplantation: Continued insulin reserve provides long term glycemic control. Diabetes 51:2148-2157.   DOI   ScienceOn
19 Yoon, K., R. R. Quickel, K. Tatarkiewicz, T. R. Ulrich, J. Hollister-Lock, N. Trivedi, S. Bonner-Weir and G. C. Weir. 1999. Differentiation and expansion of beta cell mass in porcine neonatal pancreatic cell clusters transplanted into nude mice. Cell Transplan. 8:673-689.   DOI
20 Han, S. E., H. G. Lee, C. H. Yun, Z. S. Hong, S. H. Kim, S. K. Kang, S. H. Kim, J. S. Cho, S. H. Ha and Y. J. Choi. 2005. Effect of cellular zinc on the regulation of C2-ceramide induced apoptosis in mammary epithelial and macrophage cell lines. Asian-Aust. J. Anim. Sci. 18:1741-1745.   과학기술학회마을   DOI
21 Schaffellner, S., V. Stadlbauer, P. Stiegler, O. Hauser, G. Halwachs, C. Lackner, F. Iberer and K. H. Tscheliessnigg. 2005. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant. Proc. 37:248-252.   DOI   ScienceOn
22 Archer, F. J. 1983. Monolayer culture of neonatal pig pancreatic islet cells. Diabetologia 24:185-190.
23 Balamurugan, A. N., B. Ramakrishna and S. Gunasekaran. 2004. Insulin secretory characteristics of monkey pancreatic islets: a simple method of islet isolation and the effect of various density gradients on separation. Diabetes Res. Clin. Pract. 66:13-21.   DOI   ScienceOn
24 Heald, K. A., T. R. Jay, D. Topham, J. Webberley and R. Downing. 1996. The effect of gnotobiotic rearing on porcine islet isolation and function. Transplan. Proc. 28:824-825.
25 Kin, T., G. S. Korbutt, T. Kobayashi and J. M. Dufour. 2005. Reversal of diabetes in pancreatectomized pigs after transplantation of neonatal porcine islets. Diabetes 54:1032-1039.   DOI   ScienceOn
26 Elliott, R. B., L. Escobar, P. L. J. Tan, O. Garkavenko, R. Calafiore, P. Basta, A. V. Vasconcellos, D. F. Emerich, C. Thanos and C. Bambra. 2005. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplan. Proc. 37:3505-3508.   DOI   ScienceOn
27 MacKenzie, D. A., D. A. Hullett and H. W. Sollinger. 2003. Xenogeneic transplantation of porcine islets: an overview. Transplant. 76:887-891.   DOI   ScienceOn
28 Narang, A. S. and R. I. Mahato. 2006. Biological and biomaterial approaches for improved islet transplantation. Pharmaco. Rev. 58:194-243.   DOI   ScienceOn
29 Elliott, R. B., L. Escobar, R. Calafiore, G. Basta, O. Garkavenko, A. Vasconcellos and C. Bambra. 2005. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys. Transplan. Proc. 37:466-469.   DOI   ScienceOn
30 Trivedi, N., J. Hollister-Lock, M. D. Lopez-Avalos, J. J. O'Neil, M. Keegan, S. Bonner-Weir and G. C. Weir. 2001. Increase in $\beta$- cell mass in transplanted porcine neonatal pancreatic cell clusters is due to proliferation of $\beta$-cells and differentiation of duct cells. Endocrinol. 142:2115-2122.   DOI   ScienceOn
31 Rayat, G. R., R. V. Rajotte, Z. Ao and G. S. Korbutt. 2000. Microencapsulation of neonatal porcine islets: Protection from human antibody/complement-mediated cytolysis in vitro and long-term reversal of diabetes in nude mice. Transplant. 69:1084-1090.   DOI   ScienceOn
32 Kin, T., H. Iwata, Y. Aomatsu, T. Ohyama, H. Kanehiro, M. Hisanaga and Y. Nakajima. 2002. Xenotransplantation of pig islets in diabetic dogs with use of a microcapsule composed of agarose and polystyrene sulfonic acid mixed gel. Pancreas 25:94-100.   DOI   ScienceOn
33 Zhang, C. Y., G. Baffy, P. Perret, S. Krauss, O. Peroni, D. Grujic, T. Hagen, A. J. Vidal-Puig, O. Boss, Y. B. Kim, X. X. Zheng, M. B. Wheeler, G. I. Shulman, C. B. Chan, B. B. Lowell. 2001. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105:745-755.   DOI   ScienceOn
34 Garfinkel, M. R., R. C. Harland and E. C. Opara. 1998. Optimization of the microencapsulated islet for transplantation. J. Surg. Res. 76:7-10.   DOI   ScienceOn
35 Brit, L. D., P. C. Stojeba, C. R. Scharp, M. H. Greider and D. W. Scharp. 1981. Neonatal pig psuedo-islets. A product of selective aggregation. Diabetes 30:580-583.   DOI   ScienceOn
36 Korbutt, G. S., A. G. Mallett, Z. Ao, M. Flashne and R. V. Rajotte. 2004. Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following Transplantation. Diabetologia 47:1810-1818.   DOI   ScienceOn
37 Korbutt, G. S., J. F. Elliott, Z. Ao, D. K. Smith, G. L. Warnock and R. V. Rajotte. 1996. Large scale isolation, growth, and function of porcine neonatal islet cells. J. Clin. Investig. 97:2119-2129.   DOI   ScienceOn