• 제목/요약/키워드: high vapor pressures

검색결과 53건 처리시간 0.022초

Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성 (Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures)

  • 한이레;박병주;엄지호;윤순길
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.142-148
    • /
    • 2020
  • Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

Au-Si을 촉매로 급속화학기상증착법으로 성장한 Si 나노선의 구조 및 광학적 특성 연구 (Structural and optical properties of Si nanowires grown with island-catalyzed Au-Si by rapid thermal chemical vapor deposition(RTCVD))

  • 곽동욱;이연환
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.279-285
    • /
    • 2007
  • 나노크기의 Au-Si을 촉매로 급속화학기상증착법을 이용하여 Si(111) 기판에 성장한 Si 나노선의 구조적인 형태 변화과정과 광학적 특성을 연구하였다. 액상 입자인 Au 나노 점은 기상-액상-고상(vapor-liquid-solid mechanism) 성장법에 의한 Si 나노선 형성 과정에서 촉매로 사용되었다 이 액체 상태인 나노점에 1.0Torr 압력과 $500-600^{\circ}C$ 온도 하에서 $SiH_4$$H_2$의 혼합가스를 공급하여 Si 나노선을 형성하였다. <111> 방향으로 형성한 Si 나노선의 형태를 전계방출 주사전자현미경(Field Emission Scanning Electron Microscope)으로 관찰하였다. 특히, 대부분의 나노선이 균일한 크기를 가지고 있으며, Si(111) 기판 표면에서 수직하게 정렬된 것을 확인하였다. 형성된 나노선의 크기를 분석한 결과, 직경과 길이가 각각 60nm와 5um의 분포를 가지는 것을 확인 하였다. 고 분해능 투과전자현미경(High Resolution-Transmission Electron Microscope)을 통해 약 3nm의 다결정 산화층으로 둘러 싸여 있는 Si 나노선이 단결정으로 형성된 것을 관찰하였다. 그리고 마이크로 라만 분광(Micro-Raman Scattering) 실험으로 Si 나노선의 광학적 특성을 분석하였다. 라만 측정결과 Si의 광학 포논(Optical Phonon) 신호가 Si 나노선의 영향으로 에너지가 작은 쪽으로 이동하며, Si 포논 신호의 폭이 비대칭적으로 증가하는 것을 확인 하였다.

연료 송출용 제트펌프 3차원 전산해석 모델 (Three Dimensional Simulation Model of Fuel Delivery Jet Pump)

  • 박다인;윤진원;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권3호
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.

분위기 온도에 따른 충돌 분무의 거동에 대한 실험 및 수치적 연구 (Experimental and Numerical Study on Behavior of Impinging Spray according to Ambient Temperature)

  • 심영삼;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.124-131
    • /
    • 2007
  • The numerical study on behavior of impinging spray from high-pressure swirl injector under various ambient temperatures was performed by using spray vaporization model and spray-wall impingement model implemented in modified KIVA code, and these spray models were estimated by comparison with experimental results. To compute the spray-wall impingement process, the Gosman model, which is based on the droplet behavior after impingement determined by experimental correlations, was used. The modified Abramzon and Sirignano model, that includes the effects of variable thermodynamic properties and non-unitary Lewis number in the gas film, was adapted for spray vaporization process. The exciplex fluorescence measurements were also conducted for comparison. The experimental and numerical analysis were carried out at the ambient pressures of 0.1 MPa and at the ambient temperature of 293 K and 473 K, and the spray characteristics, such as spray-wall impingement process, gas velocity field, SMD and vapor concentration, were acquired. It was found that the impinging spray develops active and SMD is small at vaporization conditions.

2012년 겨울철 특별관측자료를 이용한 강수현상 시 대기 연직구조와 민감도 실험 (Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012)

  • 이상민;심재관;황윤정;김연희;하종철;이용희;정관영
    • 대기
    • /
    • 제23권2호
    • /
    • pp.187-204
    • /
    • 2013
  • This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구 (A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR)

  • 신종국;윤천석;김홍석
    • 한국자동차공학회논문집
    • /
    • 제23권2호
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Graphite Carbon에 $H_2S,\;NH_3$$CH_3SH$의 흡착에 대한 분자모사 연구 (The Molecular Simulation Study for the Adsorption of $H_2S,\;NH_3$ and $CH_3SH$ on Graphite Carbon)

  • 신창호;김종열;이영택;김정열;김승준
    • 한국연초학회지
    • /
    • 제25권1호
    • /
    • pp.59-69
    • /
    • 2003
  • The adsorption characteristics of H$_2$S, NH$_3$and $CH_3$SH on the graphite carbon have been investigated using Grand Canonical Monte Carlo(GCMC) method with universal force field (UFF) and dreiding force field. Most of the activated carbons used in vapor phase adsorption have the micropore of 6$\AA$ to 20$\AA$ and the specific surface area of ca. 1000 m$^2$/g, as the result of $N_2$ adsorption by BET method. For the more efficient comparison, the activated carbons have been manipulated with different pore sizes. The adsorption characteristics of H$_2$S, NH$_3$and $CH_3$SH have been considered at various temperatures and pressures. The adsorption amount using Dreiding force field is predicted to be lower than that using UFF. As the temperature is going to high, the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, NH$_3$ is barely adsorbed and $CH_3$SH is preferentially adsorbed on the graphite carbon. Our theoretical result is qualitatively good agreement with the experimental observation. However, there are some quantitative discrepancies depending on the functional groups and pore size distribution on the real activated carbons used in experiment.

Precursor Chemistry for Atomic Layer Deposition

  • Chung, Taek-Mo;Kim, Chang Gyoun;Park, Bo Keun;Jeon, Dong Ju;An, Ki-Seok;Lee, Sun Sook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.76.2-76.2
    • /
    • 2013
  • Advanced electronic application areas have strongly required new materials due to the continuous shrinking dimensions of their devices. Specially, the development and use of metal precursors for atomic layer deposition has been extensively focused on application to electronic devices. Thus the systematic design and synthesis of metal compounds with relevant chemical and physical properties, such as stability, volatility, and resistance to air and moisture are very important in the vacuum deposition fields. In many case, organic ligands for metal precursors are especially focused in the related research areas because the large scale synthesis of the metal complexes with excellent properties exclusively depends on the potential usefulness of the ligands. It is recommended for metal complexes to be in monomeric forms because mononuclear complexes generally show high vapor pressures comparing with their oligomeric structure such as dimer and trimer. Simple metal alkoxides complexes are involatile except several examples such as Ti(OiPr)4, Si(OEt)4, and Hf(OtBu)4. Thus the coordinated atom of alkoxide ligands should be crowded in its own environment with some substituents by prohibiting the coordinated atoms from bonding to another metal through oxygen-bridging configuration. Alkoxide ligands containing donor-functionalized group such as amino and alkoxy which can induce the increasing of the coordinative saturation of the metal complexes and the decreasing of the intermolecular interaction between or among the metal compounds. In this presentation, we will discuss the development of metal compounds which adopted donor-functionalized alkoxide ligands derived from their alcohols for electronic application. Some recent results on ALD using metal precursors such as tin, nickel, ruthenium, and tungsten developed in our group will be disclosed.

  • PDF