• Title/Summary/Keyword: high transmittance

Search Result 913, Processing Time 0.031 seconds

Top Emission Organic Light Emitting Diode with Transparent Cathode, Ba-Ag Double Layer

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of Information Display
    • /
    • v.7 no.3
    • /
    • pp.23-26
    • /
    • 2006
  • We fabricated top emission organic light emitting diode (TEOLED) with transparent metal cathode Barium and Silver bilayer. Very thin Ba/Ag bilayer was deposited on the organic layer by thermal evaporation. This cathode showed high transmittance over 70% in visible range, and the device with a Ba-Ag has a low turn on voltage and good electrical properties.

Image Sticking Property in the In-Plane Switching Liquid Crystal Display by Residual DC Voltage Measurements

  • Jeon, Yong-Je;Seo, Dae-Shik;Kim, Jae-Hyung;Kim, Hyang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.142-145
    • /
    • 2001
  • The residual DC phenomena in the in-plane switching(IPS)-liquid crystal display(LCD) by the voltage-transmittance (V-T) and capacitance-voltage (C-V) hysteresis method on rubbed polyimide (PI) surfaces were studied. We found that the residual DC voltage in the IPS-LCD was decreasing with the increasing concentration of cyano LCs. The residual DC voltage of the IPS-LCD can be improved by the high polarity of cyano LCs.

  • PDF

Locked Super Homeotropic (LSH) liquid crystal device for large size LCD (대면적의 LCD를 위한 갇혀진 Locked Super Homeotropic (LSH) 액정 디바이스)

  • Park, S.H.;Song, I.S.;Kim, W.C.;Oh, S.T.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.146-149
    • /
    • 2004
  • We have studied a liquid crystal (LC) mode (named locked super homeotropic (LSH)) in which the LCs aligned homeotropically are locked by surrounding walls such as cubic, hexagonal and cylinder. In the device, the vertically aligned LCs tilt down symmetrically around the center of the cell when a voltage is applied and thus it exhibits wide viewing angle. The structure of this LSH mode is suitable for large-sized display panels. since the LCs are locked in micro domains the LCs do not flow to the bottom of the panel by gravity. This mode is applicable to achieve high performance TFT-LCD TV because of high performance characteristics such as high contrast, high brightness, wide-viewing angle.

  • PDF

A Review of Wet Chemical Etching of Glasses in Hydrofluoric Acid based Solution for Thin Film Silicon Solar Cell Application

  • Park, Hyeongsik;Cho, Jae Hyun;Jung, Jun Hee;Duy, Pham Phong;Le, Anh Huy Tuan;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.75-82
    • /
    • 2017
  • High efficiency thin film solar cells require an absorber layer with high absorption and low defect, a transparent conductive oxide (TCO) film with high transmittance of over 80% and a high conductivity. Furthermore, light can be captured through the glass substrate and sent to the light absorbing layer to improve the efficiency. In this paper, morphology formation on the surface of glass substrate was investigated by using HF, mainly classified as random etching and periodic etching. We discussed about the etch mechanism, etch rate and hard mask materials, and periodic light trapping structure.

Transparent Hydrophobic Anti-Reflection Coating with SiO2\TiO2 Thin Layers (SiO2\TiO2 박막에 의한 투명 발수 반사방지 코팅)

  • Noh, Yeoung-Ah;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Functional coatings, such as anti-reflection and self-cleaning, are frequently applied to cover glass for photovoltaic applications. Anti-reflection coatings made of mesoporous silica film have been shown to enhance the light transmittance. $TiO_2$ photocatalyst films are often applied as a self-cleaning coating. In this study, transparent hydrophobic anti-reflective and self-cleaning coatings made of $SiO_2/TiO_2$ thin layers were fabricated on a slide glass substrate by the sol-gel and dip-coating processes. The morphology of the functional coatings was characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optical properties of the functional coatings were investigated using an UV-visible spectrophotometer. Contact angle measurements were performed to confirm the hydrophobicity of the surface. The results showed that the $TiO_2$ films exhibit a high transmittance comparable to that of the bare slide glass substrate. The $TiO_2$ nanoparticles make the film more reflective and lead to a lower transmittance. However, the transmittance of the $SiO_2/TiO_2$ thin layers is 93.5% at 550 nm with a contact angle of $110^{\circ}$, which is higher than that of the bare slide glass (2.0%).

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

Properties of $TiO_2$ thin film coated on $SnO_2$ thin films by sol-gel method (Sol-gel 법에 의해 $SnO_2$계 박막위에 코팅된 $TiO_2$ 박막의 특성)

  • Lim, Tae-Young;Cho, Hye-Mi;Kim, Jin-Ho;Hwang, Jong-Hee;Hwang, Hae-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.256-261
    • /
    • 2009
  • Hydrophilic and transparent $TiO_2$ thin film was fabricated by sol-gel method and the properties of contact angle, surface morphology, and transmittance were measured. In addition, surfactant Tween 80 was used for increasing the hydrophilic property of thin film. When the contents of Tween 80 in $TiO_2$ solution was 0, 10, 30, 50wt%, the contact angles of $TiO_2$ thin film were $41.4^{\circ}$, $18.2^{\circ}$, $16.0^{\circ}$, $13.2^{\circ}$, respectively. Fabricated $TiO_2$ thin film showed the photocatalytic property that decomposed methylene blue and decreased the absorbance of solution after UV irradiation. $TiO_2$ thin films fabricated with the solution of 30 wt% Tween 80 were deposited on glass (bare), antimony tin oxide (ATO), fluorine tin oxide (FTO), indium tin oxide (ITO) coated glass substrates, and the contact angle and transmittance of thin film was measured. The contact angles of thin films deposited on four substrates were $16.2\sim27.1^{\circ}$ and was decreased to the range of $13.2\sim17.6^{\circ}$ after UV irradiation, Especially, the thin films coated on ATO and FTO glass substrate showed high transmittance of 74.6% in visible range, respectively, and low transmittance of 54.2% and 40.4% in infrared range, respectively.

Fabrication of the micro-mold and nanofiber using cellulose solution (셀룰로오스를 이용한 마이크로 몰드 및 나노섬유 제작)

  • Cho, Ki-Youn;Lim, Hyun-Kyu;Kang, Kwang-Sun;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.69-72
    • /
    • 2007
  • Cellulose is a beneficial material that has low cost, lightweight, high compatibility and biodegradability. Recently electroactive paper (EAPap) on cellulose base was discovered as a smart material and actuator through ion migration and piezoelectric effect. Furthermore cellulose has a potentiality to apply the display material, because of its high reflectivity, flexibility and high transmittance. The various shapes and height patterns of the Cellulose acetate (CA) solution, such as circle and honeycomb patterns, were fabricated and observed by field emission scanning electron microscope (FESEM, S4300 Hitachi). The resulting pattern showed uniform size in the large area without defect. After stretching the CA film with saponification process in the sodium methoxide in methanol solution, Most of the compositions become one directional ordered nanofibers below 50nm.

  • PDF

A study on AR, HR coating simulations for the high power laser diode (고출력 laser diode를 위한 AR, HR coating simulation에 관한 연구)

  • 류정선;윤영섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.498-505
    • /
    • 1996
  • In the present work, we have developed the simulator to optimize the process conditions of the AR(antireflection) and HR(high-reflection) coatings for the high power laser diode. The simulator can run on the PC. After making the simple optical model, we establish the Maxwell equations for the model by the operator conversion. By using the Mathematica, we derive a matrix for the multilayer system by applying the equations to the model and optimize the AR and HR coating process conditions by obtaining the reflection rate from the matrix. We also prove the validity of the simulator by comparing the simulation with the characteristics of the laser diode which is AR and HR coated according to the optimized conditions.

  • PDF