• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.023 seconds

Effect of Heat Input on the Mechanical Properties of SA508 class 3 Steel Weldments with Submerged Arc Welding (SA508 class 3 서브머지드 아크용접부의 기계적 성질에 미치는 입열량의 영향)

  • Seo Yun-seok;Koh Jin-Hyun;Kim Nam-Hoon;Oh Se-Yong;Choo Kee-Nam
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • The present study is to investigate the effect of heat input on the microstructure, tensile properties and toughness of single-pass submerged arc bead-in-groove welds produced on SA508 class 3 steels. The heat input was varied in the range of 1.6, 3.2 and 5.0 kJ/mm. The toughness of weld metals was evaluated by using subsize Charpy V-notch specimens in the temperature range of -19$0^{\circ}C$ to 2$0^{\circ}C$. The weld microstructure and fractography were observed by optical and scanning electron microscopies, respectively. With increasing heat inputs, tensile strength and hardness of weld metals were decreased while elongation was increased. The poor notch toughness at 1.6 kJ/mm was attributed to the formation of ferrite with aligned second phase and banitic microstructure with high yield strength while that at 5.0 kJ/mm was due to the presence of grain boundary and polygonal ferrites. The microstructure of the intermediate energy input welds consisted of a high proportion of acicular ferrite with limited polygonal ferrites, which provide improved notch toughness.

Simulation of impact toughness with the effect of temperature and irradiation in steels

  • Wang, Chenchong;Wang, Jinliang;Li, Yuhao;Zhang, Chi;Xu, Wei
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.221-227
    • /
    • 2019
  • One of the important requirements for the application of reduced activation ferritic/martensitic steel is to retain proper mechanical properties in irradiation and high temperature conditions. In order to simulate the impact toughness with the effect of temperature and irradiation, a simulation model based on energy balance method consisted of crack initiation, plastic propagation and cleavage propagation stages was established. The effect of temperature on impact toughness was analyzed by the model and the trend of the simulation results was basicly consistent with the previous experimental results of CLAM steels. The load-displacement curve was simulated to express the low temperature ductile-brittle transition. The effect of grain size and inclusion was analyzed by the model, which was consistent with classical experiment results. The transgranular-intergranular transformation in brittle materials was also simulated.

Mixed Mode Crack Propagation using the High Strength Concrete Disk (고강도 콘크리트 디스크를 이용한 혼합모드 균열전파)

  • 진치섭;김희성;박현재;김민철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.733-738
    • /
    • 2000
  • It is difficult to obtain accurate fracture toughness values by RILEM committees proposed three point bend test(TPB) because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, for disk test, fracture toughness is easily obtained from crack initial load. We examined the cracked high strength concrete disk and the experimental results were compared with the results by finite element analysis(FEA). Also we compared experimental fracture locus with theoretical fracture locus.

  • PDF

Effect of Ti addition on the fracture toughness of Al-Ti-B alloys synthesized by high energy ball milling and spark plasma sintering (고 에너지 볼 밀링과 SPS 성형에 의해 제조된 Al-Ti-B합금의 파괴인성에 미치는 Ti의 영향)

  • 김지희;김선진;김준기
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.84-84
    • /
    • 2003
  • The effects of Ti addition on microstructure and mechanical properties of (Al+Xat.%Ti)2at%B (X=0.5, 1, 2) fabricated by mechanical alloying and spark plasma sintering (SPS) were investigated. These alloys were prepared by high energy ball milling (attritor) and then fracture toughness was investigated by using a charpy impact tester. The SPS method was used to consolidate (Al+Xat.%Ti)fat.%B with the pressure of 50MPa. The powders were successfully consolidated to alloy which the theoretical density is 99%. It was confirmed that the fracture toughness of Al-Bat.% matrix composites was increased by the addition of Ti.

  • PDF

A Study on the Automobile Clutch Disc Spline Hub with High Toughness by Powder Metallurgy (분말 야금에 의한 고인성 자동차 Clutch Disc Spline Hub 개발에 관한 연구)

  • 허만대;장경복;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 1998
  • Powder metallurgy processes are able to form Net-Shape products and have been widely used in the production of automobile parts to improve its productivity. However, because of pores in powder products, the toughness of powder products are generally poor. Therefore, forged products are used in parts which suffer severe fatigue loads. In this paper, the choice of powder materials and production processes such as mixing, compaction, sintering, heat treatment to produce automobile spline hub are studied. Three type of materials are selected and processed and its microstructure and properties are investigated by tensile test, compression ring test, and impact test. Materials and processing methods are selected from the results. Finally, experimental spline hubs are manufactured by selected processes from selected powders and proved by torsional durability test.

  • PDF

The Physical Properties of RTFL Adhesive for Bonding SBR to Nylon (SBR과 나일론 접착을 위한 RTFL 접착제의 물성)

  • Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.28 no.4
    • /
    • pp.274-282
    • /
    • 1993
  • Resorcinol-tannin-formaldehyde-latex(RTFL) adhesive was prepared to bond SBR to nylon in reinforced rubber composites. A key factor of adhesive contributes to the adhesion strength between SBR and nylon was the toughness of adhesive itself. Although the stiffness and strength of adhesive film decreased slightly with increasing level of tannin substitution for resorcinol in a standard RFL adhesive, the maximum toughness of adhesive film, which showed yield behavior and high dissipative capacity, was obtain by 60% tannin substitution. However, a marked softening and reduction in toughness occurred at sufficiently high substitution. Also, the adhesive film, which was heat-treated to simulate cure, showed higher strength than the unheated film. Thus, the properties of tannin containing adhesives could be optimized by using 40/60 weight ratio of the resorcinol/tannin in RTFL adhesive composition as well as heat treatment of adhesive film.

  • PDF

Effects of Powder Mixing on the Mechanical Properties of Thermally Sprayed WC-Co-Cr Coating Layers (WC-Co-Cr 용사코팅시 분말의 혼합이 코팅층의 기계적 특성에 미치는 영향)

  • Lee, Chang Woo;Han, Jun Hyun;Shin, Myung Chul;Kwun, S.I.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.290-296
    • /
    • 2009
  • We report on the effects of mixing of powders with various particle sizes on fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by HVOF (high-velocity oxygen fuel) process. The size and the mixing ratio of powders were changed in order to get high fracture toughness and wear resistance. The mixing of small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance due to the lowest porosity in coating layers.

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

Optimization of Electrical Conductivity and Fracture Toughness in $Y_2O_3-Stabilized$ $ZrO_2$ through Microstructural Designs (이트리아 안정화 지르코니아에서 미세조직 설계에 따른 전기전도도와 파괴인성치의 적정화)

  • 강대갑;김선재
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.772-776
    • /
    • 1994
  • Using two kinds of ZrO2 powder stabilized by 8 mol% and 3 mol% of Y2O3 several microstructures were designed; two single composition specimens of 8 mol% Y2O3-ZrO3 and 3 mol% Y2O3-ZrO2 and five mixture specimens with multi-layered structure and particulate mixture structure at a mixing ratio of 1:1 by weight. Electrical conductivities were measured from 250 to 75$0^{\circ}C$ in air using an impedance analyser, and fracture toughness at room temperature using the indentation method. Making the mixture structures was more effective in enhancing fracture toughness than electrical conductivity. At low temperatures 3 mol% Y2O3-ZrO2 showed the highest values in both electrical conductivity and fracture toughness, while at high temperature the specimens of alternately stacked planar and coarse granulated structure were most favorable.

  • PDF

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF