• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.029 seconds

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

Mechanical Properties of Graphene-based Polyimide Composites (그래핀 기반 폴리이미드 복합재의 기계적 물성)

  • Nam, Ki-Ho;Yu, Jaesang;You, Nam-Ho;Han, Haksoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.261-266
    • /
    • 2017
  • Polymer composites are materials in which various fillers are uniformly dispersed on the basis of organic resin. They have excellent processability and diversity for industrial products. Recently, as carbon nanomaterials are developed, there is a great deal of effort to use them as reinforcing fillers to fabricate high performance composite materials. In order to transfer the inherent properties of fillers into composite materials as much as possible, the good dispersion and orientation of fillers, and favorable interfacial interaction between fillers and matrix are considered to be very important. In this review article, we intent to derive and explain the relationship between surface chemical structure of fillers and physical properties of composites as a strategy of high strength and toughness of graphenebased polyimide composites.

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.

Low-Cycle Fatigue in Quenched Boron Steel Sheet Due to Hot Stamping (열간 성형된 보론강판의 저주기 피로 특성)

  • Jang, Won-Seok;Suh, Chang-Hee;Oh, Sang-Kyun;Kim, Dong-Bae;Sung, Jee-Hyun;Jung, Yun-Chul;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1419-1425
    • /
    • 2010
  • Boron steel sheet is suitable for fabricating automobile parts because it is very strong and has low weight. Recently, many car makers are investigating the feasibility of fabricating the chassis part of automobiles using boron steel. In order to use boron steel sheets to fabricate the chassis part of automobiles, much better material property of low cycle fatigue life as well as high formability during hot stamping is required. Therefore, the low-cycle fatigue life of hot-stamped quenched boron steel was investigated in this study. The fatigue life observed at low strain amplitude was longer than that of an as-received boron steel sheet. However, the fatigue life reduced at high strain amplitude because of the low ductility and low fracture toughness of martensite, which was produced as a result of hot stamping.

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels (HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향)

  • Eom, Haewon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.184-196
    • /
    • 2020
  • In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

A study on the optimization of three-dimensional auxetic pyramid structure by using EDISON program (EDISON 프로그램을 사용한 3차원 팽창 피라미드 구조의 최적화 연구)

  • Kim, Gyu-Young;Kim, Soo-ho;Yun, Gi-Won;Kim, Hyun-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.807-815
    • /
    • 2017
  • Auxetic structures with negative Poisson's ratio can be used to achieve high mechanical properties in energy absorption and destruction toughness. In this paper, we aim to design an auxetic structure which has a high negative Poisson's ratio and a stiffness over 50N/mm by using an optimization method. Length(L), thickness(t) and angle(${\theta}_1$, ${\theta}_2$) of an auxetic pyramid are the design parameters, and also stress, Poisson's ratio and stiffness are thr reaction factors. We used Box-Behnken method and conducted 4 factors - 3 levels experiment design. Finite element models are analyzed by using Edison program CSD_EPLAST.

Effect of fiber type and content on properties of high-strength fiber reinforced self-consolidating concrete

  • Tuan, Bui Le Anh;Tesfamariam, Mewael Gebregirogis;Hwang, Chao-Lung;Chen, Chun-Tsun;Chen, Yuan-Yuan;Lin, Kae-Long
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.299-313
    • /
    • 2014
  • Effects of polypropylene (PP) fibers, steel fibers (SF) and hybrid on the properties of highstrength fiber reinforced self-consolidating concrete (HSFR-SCC) under different volume contents are investigated in this study. Comprehensive laboratory tests were conducted in order to evaluate both fresh and hardened properties of HSFR-SCC. Test results indicated that the fiber types and fiber contents greatly influenced concrete workability but it is possible to achieve self consolidating properties while adding the fiber types in concrete mixtures. Compressive strength, dynamic modulus of elasticity, and rigidity of concrete were affected by the addition as well as volume fraction of PP fibers. However, the properties of concrete were improved by the incorporation of SF. Splitting tensile and flexural strengths of concrete became increasingly less influenced by the inclusion of PP fibers and increasingly more influenced by the addition of SF. Besides, the inclusion of PP fibers resulted in the better efficiency in the improvement of toughness than SF. Furthermore, the inclusion of fibers did not have significant effect on the durability of the concrete. Results of electrical resistivity, chloride ion penetration and ultrasonic pulse velocity tests confirmed that HSFR-SCC had enough endurance against deterioration, lower chloride ion penetrability and minimum reinforcement corrosion rate.

The Effects of $Y_3Al_5O_{12}$ on the Mechanical Properties of Silicon Nitride (복산화물에 의한 질화규소 세라믹스의 제조와 그 기계적 특성)

  • Noh, Sang-Hoon;Kim, Bu-Ahn;Jeong, Hae-Yong;Yoon, Han-Ki
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • In the present work, silicon nitride was fabricated with $Y_3Al_5O_{12}$ as sintering additive and its mechanical properties were investigated. Silicon nitride with 3, 5, 7wt% of $Y_3Al_5O_{12}$ was prepared and sintered by a Hot Pressing (HP) technique at 1750, $1800^{\circ}C$ for 2 hours. The Process was fulfilled under different process pressures of 30, 45MPa respectively. Mechanical properties (density, strength, hardness, fracture toughness) were investigated as a function of $Y_3Al_5O_{12}$ contents in $Si_3N_4$. $Si_3N_4-Y_3Al_5O_{12}$ ceramics showed similar mechanical properties compared with $Si_3N_4-Y_2O_3-Al_2O_3$ ceramics. But its high temperature strength was higher than $Si_3N_4-Y_2O_3-Al_2O_3$ceramics considerably.

  • PDF

An Evaluation of Aging Degradation Damage for Cr-Mo-V Steel by Electrochemical Potentiokinetic Reactivation Test (재활성화 분극시험에 의한 Cr-Mo-V강의 시효열화 손상 평가)

  • Kwon, Il-Hyun;Na, Sung-Hun;Song, Gee-Wook;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Cr-Mo-V steel is widely used as a material for the turbine structural component in fossil power plants. It is well known that this material shows the various material degradation phenomenons such as temper embrittlement, carbide coarsening. and softening etc. or ins to the severe operation conditions as high temperature and high pressure. These deteriorative factors cause tile change of mechanical properties as reduction of fracture toughness. Therefor it is necessary to evaluate tile extent of degradation damage for Cr-Mo-V steel in life assessment of turbine structural components. In this paper. the electrochemical potentiokinetic reactivation(EPR) test in $50wt%-Ca(NO_3)_2$ solution is performed to develop the newly technique for degradation damage evaluation of Cr-Mo-V steel. The results obtained from the EPR test are compared with those in small punch(SP) tests recommended by semi-nondestructive testing method using miniaturized specimen. The evaluation parameters used in EPR test are tile reactivation current density$(I_R)$ and charge$(Q_{RC})$ reactivation rate$(I_R/I_{Crit},\;Q_R/Q_{Crit})$. The results suggest that $I_R/I_{Crit}$ in these parameters shows a good correlation with SP test results.

  • PDF