• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.026 seconds

A Study on the Design of High-Stength Titanium Alloys Using DV-Xα Molecular Orbital Method (DV-Xα 분자 궤도법을 이용한 고강도 타이타늄 합금 설계)

  • Baek, Min-Sook;Yoon, Dong-Joo;Won, Dae-Hee;Kim, Byung-Il
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.739-745
    • /
    • 2011
  • Beta-type alloys are the most versatile class of titanium alloys. They offer the highest strength to weight ratios and very attractive combinations of strength, toughness, and fatigue resistance inlarge cross sections [1]. The present study was made to obtain useful information for the design of ${\beta}$-type titanium alloys with high-strength properties by using the $DV-X{\alpha}$ method. Employing two calculated parameters, the bond order (Bo) and the d-orbital energy level (Md) of alloying elements in ${\beta}$-type titanium alloy was introduced and used for prediction of mechanical properties. Thus, high-strength titanium alloys were designed by calculating the Md and Bo values of the previous and present titanium alloys.

Nonlinear finite element analysis of ultra-high performance fiber reinforced concrete beams subjected to impact loads

  • Demirtas, Gamze;Caglar, Naci;Sumer, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • Ultra-high performance fiber reinforced concrete (UHPFRC) is a composite building material with high ductility, fatigue resistance, fracture toughness, durability, and energy absorption capacity. The aim of this study is to develop a nonlinear finite element model that can simulate the response of the UHPFRC beam exposed to impact loads. A nonlinear finite element model was developed in ABAQUS to simulate the real response of UHPFRC beams. The numerical results showed that the model was highly successful to capture the experimental results of selected beams from the literature. A parametric study was carried out to investigate the effects of reinforcement ratio and impact velocity on the response of the UHPFRC beam in terms of midpoint displacement, impact load value, and residual load-carrying capacity. In the parametric study, the nonlinear analysis was performed in two steps for 12 different finite element models. In the first step, dynamic analysis was performed to monitor the response of the UHPFRC beam under impact loads. In the second step, static analysis was conducted to determine the residual load-carrying capacity of the beams. The parametric study has shown that the reinforcement ratio and the impact velocity affect maximum and residual displacement value substantially.

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Impregnation Behavior of SiCf/SiC Composites Depending on the Polycarbosilane Precursor and Solvent (폴리카보실란의 종류와 용제에 따른 SiCf/SiC복합재의 충진 거동)

  • Kim, Sun-Han;Jung, Yang-Il;Park, Jeong-Yong;Kim, Hyun-Gil;Koo, Yang-Hyun;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.474-480
    • /
    • 2014
  • Process conditions for the impregnation of polycarbosilane preceramic polymer into SiC-based composites were investigated. Two kinds of preceramic polymer (PCP) was impregnated into SiC-fiber fabrics with different solvents of n-hexane and divinylbenzene (DVB). Both microstructural observations and mechanical tests were conducted to evaluate the impregnation. The matrix phases were particulated in the case of hexane solvents. Apparent relative density of the matrix was about 78.8%. The density of matrix was increased to about 96.1-98.8% when the DVB was used; however, brittle fracture was observed during a bending test. The modulus of toughness was less than $0.74J/m^3$. The fabric impregnated with a mixed PCP-dissolved solution showed intermediate characteristics with relative high density of filling (apparent density of ~96.1%) as well as proper bending behavior. The modulus of toughness was increased to about $5.31J/m^3$. The composites developed by changing the precursor and solvent suggested the possibility of fabricating SiCf/SiC composites without a fiber to matrix interphase coating.

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.