• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.032 seconds

An Experimental Study on the Characteristics of Deformation of Repaired Epoxy Resin by Flexural Strength Test (휨시험에 의한 에폭시 균열주입제의 변형특성에 관한 실험적 연구)

  • Kim Jae Sung;Bae Jun Young;Kim Kyung Deok;Kang Suk Pyo;Kawk Ju Ho;Kim Jung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.269-272
    • /
    • 2005
  • Epoxy resins are gradually becoming some of the most important and versatile polymers in modem civil engineering. Because epoxy resins have some unigue properties, such as toughness, versatility of viscosity and curing conditions, good handling characteristics, high adhesive strength, inertness, low shrinkage compared to most other thermo-setting resins and concrete, and resistance to chemicals, they have found many applications in construction castings, repair materials, road or bridge deck pavements, coatings, and as structural or non structural adhesives. In this applications, epoxy resins are widely used for polymer concretes, grouting materials, injection glues, and sealants. In this paper, characteristics of deformation of repair material after repaired have been investigated by viscosity of repair material and the width of crack. It is believed that flexural strength of epoxy resin with low viscosity is high because tensile strength is high and elongation at break is low, fracture energy is low.

  • PDF

Recent characteristics of dental esthetic restorative ceramics (임상가를 위한 특집 1 - 치과심미수복용 세라믹의 최신 특성평가)

  • Oh, Seunghan
    • The Journal of the Korean dental association
    • /
    • v.51 no.1
    • /
    • pp.6-11
    • /
    • 2013
  • Dental ceramics is well known to have excellent esthetics, biocompatibility as well as high compressive strength. However, the fragility of ceramics against tensile and shear loads leading to the delayed fracture of micro crack on ceramic surface and the backwardness of ceramic fabrication technique limit the usage of ceramic materials in dentistry. Among all ceramic materials, zirconia has been introduced to overcome the drawback of conventional dental ceramics in the field of dentistry due to the nature of zirconia featuring proper opalescence and high fracture toughness. Also, novel manufacturing techniques enable ceramic materials to prepare high esthetic anterior and posterior all ceramic system. In this paper, it is introduced and discussed that novel techniques characterizing the bond strength between zirconia core and veneering ceramics and analyzing the fluorescence of dental ceramics in order to overcome the gap between the results of basic research and the feasibility of the results in the field of dental clinics.

Characteristics of Steel Sleeper with the Shape (철침목의 형상에 따른 특성)

  • Chang Seky;Yoon Hee-Taek;Moon Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.830-835
    • /
    • 2005
  • Steel sleepers have largely two types, n and Y types, depending on their shapes and are used mostly in Europe since 1980. The sleepers are made of steel of high strength and toughness, and thus recycling is completely possible up to $100\%$. Since the weight is almost one quarter and the less of that of concrete sleeper, the cost for delivery is saved. In addition, high economical efficiency is expected from the extended maintenance intervals. The n type is used in Europe, Australia, mideast Asia and north America whereas the Y type in Germany. Steel sleeper with high functionality is domestically developed through the comparison of characteristics with the shapes.

  • PDF

On Applicability of UItra High Performance Concrete for Prestressed Concrete I-Girder (초고성능 콘크리트의 I형 PSC거더 적용성에 관한 고찰)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Kyung-Taek;Kim, Sung-Wook;Han, Nock-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.493-496
    • /
    • 2006
  • Ultra high performance concrete(UHPC) has an excellent strength, toughness, and durability. It seems that it is very efficiently applicable for various structures such as bridge, building. When it is used to bridge girder, It is possible to reduce the amount of concrete and steel, to cut down costs for construction. This paper estimated whether it was applicable and how it was efficient. It was confirmed that the height of girder could be reduced by 40% or more in using UHPC. We can also think that the stirrups can be removed considering the ductile tensile behavior of UHPC and that its very high compressive strength make the anchor plate smaller from this study.

  • PDF

Review of 150MPa grade Ultra-High Strength Concrete which is Hybrid Fiber mixture (150MPa급 초고강도 콘크리트의 섬유 복합 혼입에 따른 휨강도 검토)

  • Kim, Sung-Yong;Ha, Jung-Soo;Kim, Hak-Young;Kim, Han-Sik;Lim, Nam-Gi;Jeong, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.36-37
    • /
    • 2013
  • It is the study on the mechanical properties of the material when mixing hybrid fiber as steel and synthetic fiber to improve fire resistance and toughness of concrete. Finally, The purpose is to identify of mechanical properties of Hybrid Fiber-Reinforced Ultra High Strength Concrete such as flexural strength.

  • PDF

Effect of Alloying Elements on Microstructures and Mechanical Properties of Bainitic Microalloyed Steels (베이나이트계 비조질강에서 미세조직과 기계적성질에 미치는 합금원소의 영향)

  • Won S. H.;Park H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.325-328
    • /
    • 2005
  • Bainitic microalloyed steels have drawn a lot of attention because of high strength combined with high toughness. In order to process the alloys easily , it is necessary to get the alloys of high hardenability. Mo and B were added to enhance the hardenability, which was demonstrated by TTT simulation and microstructures. It was also identified using BNCT that B, hardenability raising element, was distributed more evenly as cooling rate went up. Examination of grain coarsening temperature depending upon austenitizing temperature revealed that V and Ti effectively inhibited the grain growth up to $1000^{\circ}C\;and\;1050^{\circ}C$ respectively.

  • PDF

Fracture Mechanics Characteristics of Wheel Materials for High Speed Train (고속철도용 차륜재의 파괴 역학적 특성)

  • Kwon S.J.;Seo J.W.;Hur H.M.;Kwon S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.20-23
    • /
    • 2005
  • The service demands of railway vehicles have become severe in recent years due to a general increase in operating speeds. It is very important to evaluate the fracture mechanics characteristics with respect to high-speed train wheel. In the present study, fracture mechanics characterization tests were carried out in accordance with various wheel materials. The result shows that fracture mechanics characteristic should be considered in the design code of the wheel materials.

  • PDF

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting (급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성)

  • Kang, Hyun-Su;Kang, Bo-Ram;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.495-501
    • /
    • 2014
  • Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.