• Title/Summary/Keyword: high toughness

Search Result 823, Processing Time 0.033 seconds

Development of Structural Steel and Trend of Welding Technology (건설용 강재개발 및 용접기술동향)

  • Kim, Sung Jin;Jeong, Hong Chul
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys (WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.171-177
    • /
    • 2005
  • The effect of variation in particle size of WC and Co powder on the properties of WC-Co alloys was investigated. WC and Co powders having different particle sizes were used in the fabrication of $WC-10\;wt\%$Co composites. High hardness and low fracture toughness alloy was obtained with the decrease in WC particle size regardless of Co particle size. It was newly found in this investigation that the initial particle size of Co as well as WC had a great role in the microstructure and properties of WC-Co hard materials. The average grain size and fracture toughness of WC-Co alloys using same WC powder size increased and their hardness decreased with the use of relatively finer Co binder.

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics (알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.170-174
    • /
    • 2015
  • Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.

Effect of Fabrication Process on the Mechanical Properties of High Strength 7175Al Die Forgings (고강도 7175Al 형단조재의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, I.G.;Kang, S.S.;Lee, O.Y.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.812-818
    • /
    • 2003
  • The aim of this study is to investigate the fabrication processes on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The billets range from 370 to 720 mm in diameter were homogenized and hot forged after direct chill casting. The strength and elongation of the homogenized cast billets were revealed nearly same level independent of the billet diameter. However, these properties of ø370 mm cast billet were superior to those of $\Pie720$ mm billet under$ T_{6}$ / condition. The tensile strength of die forged specimens under $T_{6}$ condition increased up to 20% than that of solution treatment, however, the elongation was reduced to 50%. The fracture toughness of die forged specimens under $T_{6}$ condition was 35.6∼39.0 MPa$.$$m^{1}$2 irrespective of the billet size and free forging processes, but this property increased up to 10% by$V_{74}$ treatment. The fracture toughness of die forged specimen manufactured with ø370 mm cast billet showed nearly same level of ø720 mm billet which was processed using MF or Cog free forging followed by die forging.

Fabrication and Characterization of $TiB_2$-based Cermet Using SUS316L Metal Binder (SUS316L결합상을 이용한 $TiB_2$ 서멧합금의 제조와 특성평가)

  • An, Dong-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.838-844
    • /
    • 2000
  • For the fabrication of titanium diboride($TiB_2$)- based cermet as applications of cutting tools and wear resistant materials, a binder metal with good mechanical properties and sinterability is essential. In this study, SUS316L was chosen for the binder metal to obtain a new $TiB_2$ cermet with superior hardness and toughness.$TiB_2$-SUS316L cermets were densified to relative density of more than 99% by pressureless sintering at temperature above $1650^{\circ}C$ The flexural strength was up to 1290MPa at 10vo1%SUS316L cermet in spite of the formation of $Fe_2$B phase during the sintering. The fracture toughness was obtained up to $6MPam^{1/2}$ with Victors hardness over 18Gpa. These hardness and fracture toughness combinations are better than those of conventional cermet. The high temperature strength remarkably decreased by the plastic deformations of SUS316L binder phase at nearby $800^{\circ}C$ .

  • PDF

A Study the Development of Ultra High Performance Concrete using Liquid Metal Fiber (Liquid Metal Fiber를 이용한 초고성능콘크리트의 개발에 관한 기초연구)

  • Ko, Kwan-Ho;Kwak, Min-Saeg;Ahn, Jung-Hyun;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.241-242
    • /
    • 2009
  • This study showsUltra high performance concrete with steel fiber to obtain the high ductillity. the results of high strength concrete specimences with existing steel fiber and liquid metal fiber were compared with them of plain high strength mortal through bending test. The result that the ductility of high strength concrete with liquid metal fiber was superior to that with bundrex steel fiber was found through toughness test mathod like ASTM C 1018, JSCE-SF4.

  • PDF

Machinability evaluation and development of monitoring technique in high-speed machining (고속 가공성 평가 및 가공상태 모니터링 기술 개발)

  • 김전하;김정석;강명창;나승표;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.47-51
    • /
    • 1997
  • The high speed machining which can improve the production and quality in machining has been adopted remarkably in dietmold industry. As the speed of machine tool spindle increases, the machinability evaluation and monitoring of high speed machining is necessary. In this study, the machinability of 30, 000rpm class spindle was evaluated by using the developed tool dynamometer and the machining properties of high hardened and toughness materials in high speed were examined. Finally, the in-process monitoring technologies of tool wear were presented through the prediction by the experimental formula and pattern recognition by the neural network.

  • PDF

A Study on Microstructure and High Temperature Compression Characteristics of Silicide Eutectics (실리사이드 복합 공정합금의 미세조직 및 고온 압축특성)

  • Lee, Je-Hyun;Cho, Yong-Seong;Kang, Soo-Hyeon;Park, Jang-Sik;Kim, Sang-Sik
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 1997
  • There has been a considerable interest to develop the silicide alloys as high temperature structural materials because of their excellent high temperature stability and strength, however, their lack of room temperature ductility and toughness was a main obstacle for the application. In order to improve ductility while maintaining good high temperature properties, possible refractory metal-silicide eutectic alloys composed of fine two phases were prepared by VAR(Vacuum Arc Remelting). Three silicide alloys, $Nb-Nb_3Si$, $Ti-Ti_5Si_3$, $V-V_3Si$, were selected as prospecting silicide eutectics and those high temperature characteristics were evaluated by high temperature compression test.

  • PDF

Toughness Improvement of Unsaturated Polyester Mortars Blended with Polyurethane Liquid Rubber (폴리우레탄 액상고무를 혼합한 불포화 폴리에스테르 모르타르의 인성 증진효과)

  • 최영준;박준철;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Generally polymer mortar and concrete using unsaturated polyester resin has high strengths and good chemical resistance. However it also has high brittleness and because of this reason, it is not used for the purpose that demands high resistance to impact. The purpose of this study is to improve the brittleness of unsaturated polyester mortar(UPE mortar) which could be used for the flooring material with recycled aggregates and UPE. Polyurethane liquid rubber(PU) and recycled aggregates were used to complement the brittleness and to recycle the resources respectively. The characteristics of mortar were investigated according to the molecular weight and substitution rate of PU. As the molecular weight and PU substitution rate were increased, the viscosity was increased, working life became fast and curing shrinkage was reduced. Compressive and flexural strengths were also reduced but tile brittleness was improved. Therefore, it is seemed that the improved WE mortar could be obtained by using polyurethane liquid rubber with the polyol of molecular weight 2000, 3000.