• 제목/요약/키워드: high toughness

검색결과 823건 처리시간 0.028초

아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가 (Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers )

  • 김동환;조민수;최진형;조우래;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.78-85
    • /
    • 2023
  • 이 연구는 하이브리드 섬유시트를 이용하여 보강된 철근콘크리트 기둥의 구조성능평가에 관한 연구이다. 내진보강 공법은 보강이 필요한 노후 콘크리트 구조물에 아라미드섬유와 PET섬유를 일축으로 배열하여 직조한 하이브리드 섬유시트를 에폭시로 함침하고, 이를 구조물에 부착시켜 보강 구조물의 내하력을 증진시키는데 그 목적이 있다. 특히, 강재보다 가벼운 섬유를 사용함으로써 얻어지는 재료의 경량화뿐만 아니라, 사용된 섬유 중 저강도 고인성의 섬유요소가 고강도 저인성 섬유요소의 취성적 파괴를 지연시켜 기존의 섬유보강 공법과 비교해 안전성 측면에서 우수하다. 연구는 구조실험과 그 결과에 대한 구조성능평가로 진행되었다. 총 4개의 실험체는 하이브리드 보강방법 및 파괴모드를 주요변수로 계획하였으며, 실험체 크기 및 가력조건 등은 기존연구에서 수행한 실험결과와 비교가 가능하도록 계획하였다. 실험체의 구조성능은 에너지소산능력, 연성평가등을 사용하여 평가하였다. 다음과 같은 분석을 통하여 하이브리드 섬유시트의 보강하였을 때 우수한 성능 결과를 보일 수 있다는 결론은 얻었다.

Fracture toughness of high performance concrete subjected to elevated temperatures Part 2 The effects of heating rate, exposure time and cooling rate

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • 제5권5호
    • /
    • pp.513-537
    • /
    • 2017
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was investigated by conducting three-point bending tests on a total of 240 notched beams of $500mm{\times}100mm{\times}100mm$ subjected to heating temperatures up to $450^{\circ}C$ with exposure times up to 16 hours and various heating and cooling rates. For a heating rate of $3^{\circ}C/min$, $K_{IC}$ for the hot concrete sustained a monotonic decrease trend with the increasing heating temperature and exposure time, from $1.389MN/m^{1.5}$ at room temperature to $0.942MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.906MN/m^{1.5}$ for 8-hour exposure time and $0.866MN/m^{1.5}$ for 16-hour exposure time. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and then rapidly down to $0.869MN/m^{1.5}$ at $450^{\circ}C$ for 4-hour exposure time, $0.812MN/m^{1.5}$ for 8-hour exposure time and $0.771MN/m^{1.5}$ for 16-hour exposure time. In general, the $K_{IC}$ values for the hot concrete up to $200^{\circ}C$ were larger than those for the cold concrete, and an inverse trend was observed thereafter. The increase in heating rate slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.893MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.839MN/m^{1.5}$ for $10^{\circ}C/min$ for the hot concrete and from $0.792MN/m^{1.5}$ for $1^{\circ}C/min$ to $0.743MN/m^{1.5}$ for $10^{\circ}C/min$ for the cold concrete after an exposure time of 16 hours. The increase in cooling rate also slightly decreased $K_{IC}$, and at $450^{\circ}C$ $K_{IC}$ decreased from $0.771MN/m^{1.5}$ for slow cooling to $0.739MN/m^{1.5}$ for fast cooling after an exposure time of 16 hours. The fracture energy-based fracture toughness $K_{IC}$' was also assessed, and similar decrease trends with the heating temperature and exposure time existed for both hot and cold concretes. The relationships of two fracture toughness parameters with the weight loss and the modulus of rapture were also evaluated.

30 wt% β-Tricalcium Phosphate/Al2O3 복합재료의 제조 및 특성 (Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites)

  • 정희철;하정수
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.142-147
    • /
    • 2018
  • ${\beta}-Tricalcium$ phosphate (TCP) was added to $Al_2O_3$ to make a biomaterial with good mechanical properties. Using a TCP powder synthesized by a polymer complexation method, $Al_2O_3$ composites containing 30 wt% TCP were fabricated and characterized for densification, phase, microstructure, strength, and fracture toughness. With optimizing the powder preparation conditions, a high densification of 97 % was obtained by sintering at $1350^{\circ}C$ for 2 h. No reaction between the two components occurred and there was no transition to ${\alpha}-TCP$. TCP grains with a size of $2-4{\mu}m$ were well surrounded by $Al_2O_3$ grains with a size of $1{\mu}m$ or less. Strength 61(Brazilian) or 187(3-p MOR) MPa, and fracture toughness 1.7 (notched beam) or 2.5 (indentation) $MPa{\cdot}m^{1/2}$ were obtained, which are large improvements over the strength of $TCP/Al_2O_3$ composites and toughness of TCP and hydroxyapatite in previous studies.

Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향 (Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites)

  • 정영근;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.

입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향 (Effect of Heat Input on Girth welds properties of High strain steel pipe)

  • 이진우;송우현;서동한;이종섭
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

7XXX계 단조재의 피로 및 파괴인성에 미치는 제조공정의 영향 (Effect of Fabrication Processes on the Fatigue and Fracture Toughness of 7XXX Series Aluminum Forgings)

  • 이오연;임재규;송기홍;손영일;은일상;신돈수
    • 열처리공학회지
    • /
    • 제9권3호
    • /
    • pp.161-168
    • /
    • 1996
  • The purpose of this study is to investigate the effect of impurity level and fabrication processes on the strength, fracture toughness and fatigue resistance of 7075, 7050 and 7175 high strength aluminum forgings. It has been verified that plane strain fracture toughness and fatigue characteristics of a specially processed 7175S-T74 alloy is superior to a conventionally processed 7075-T6/T73, 7050-T74 and 7175-T74 alloys. These beneficial effects primarily arise from two view points, i.e., the effect of reducing the impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. Futher reduction of the amount of nonequilibrium second phase particles has been observed by applying a special fabrication process.

  • PDF

펄스전류 가열에 의한 나노구조의 (Ti,Mo)C 합성과 동시 급속소결 및 기계적 성질 (Simultaneous Synthesis and Rapid Consolidation of Nanostructured (Ti,Mo)C and Its Mechanical Properties)

  • 조형곤;권한중;손인진
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.620-624
    • /
    • 2013
  • Nanocrystalline materials have recently received significant attention in the area of advanced materials engineering due to their improved physical and mechanical properties. A solid-solution nanocrystalline powder, (Ti,Mo)C, was prepared via high-energy milling of Ti-Mo alloys with graphite. Using XRD data, the synthesis process was investigated in terms of the phase evolution. Rapid sintering of nanostuctured (Ti,Mo)C hard materials was performed using a pulsed current activated sintering process (PCAS). This process allows quick densification to near theoretical density and inhibits grain growth. A dense, nanostructured (Ti,Mo)C hard material with a relative density of up to 96 % was produced by simultaneous application of 80 MPa and a pulsed current for 2 min. The average grain size of the (Ti,Mo)C was lower than 150 nm. The hardness and fracture toughness of the dense (Ti,Mo)C produced by PCAS were also evaluated. The fracture toughness of the (Ti,Mo)C was higher than that of TiC.

TiO2 성분 플럭스충진와이어에 따른 S500강의 GMA 용접부 특성 (Characteristics of GMA Weld Zone on TiO2 Different Component Flux Cored Wire for S500 Grade Steel)

  • 유철;고영봉;박경채
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.335-342
    • /
    • 2015
  • Recently, the production of oil and gas at the arctic ocean and offshore has been growing. Accordingly, S500 steel with the high tensile strength and excellent toughness has been used and flux cored wire that can be welded to the S500 has been required. In this study, we carried out observation of microstructures, mechanical properties and CTOD (crack tip openning displacement) in the weld zone that GMA (gas metal arc) welded with different component of $TiO_2$ flux core wire (the main components, rutile or Ti-slag) for S500 steel. Weld zone produced with Ti-slag flux cored wire has formed a enough acicular ferrite and shown excellent impact toughness at $-40^{\circ}C$, tensile strength at room temperature and CTOD at $-20^{\circ}C$. As a result, the developed flux cored wire was suitable for S500 steel.

질화규소의 고온정피로거동 (Elevated Temperature Static Fatigue in Silicon Nitride)

  • 최건;최배호;김기영
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.15-20
    • /
    • 1999
  • 상압소결 질화규소에 대한 고온정피로 거동을 K-t(stress intensity/life test)법에 의해 조사하였다. 정피로 크랙성장속도는 온도의 증가와 함께 증가한다. 온도의 증가에 따라 크랙성장속도가 증가하는 이유는 온도 증가에 따라 파괴인성치가 감소하기 때문으로 판명되었다. 즉 정피로 크랙성장속도 da/dt를 da/dt=AK1m로 나타내면, 이 식의 정수 A는 파괴인성치의 파괴인성치의 함수이도, 지수 m은 온도나 파괴인성치에 관계없이 일정한 상수이다. 그러나 글래스상의 연화가 일어나는 고온의 경우 크랙성장속도는 이상의 관계로부터 벗어남을 발견하고, 그 이유에 대하여 고찰하였다.

  • PDF

탄소섬유 강화 반응소결 탄화규소의 탄소섬유 첨가량에 따른 기계적 특성 변화 (Variation of Mechanical Properties by Carbon Fiber Volume Percent of Carbon Fiber Reinforced Reaction Bonded SiC)

  • 윤성호;양진오;조영철;박상환
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.373-378
    • /
    • 2011
  • The composite added with surface-coated chopped carbon fiber showed the microstructure of a 3 dimensional discretional arrangements. The fiber reinforced reaction bonded silicon carbide composite, containing the 50 vol% carbon fiber, showed the porosity of < 1 vol%, 3-point bending strength value of 250MPa and fracture toughness of 4.5 $MPa{\cdot}m^{1/2}$. As the content of carbon fiber was increased from 0 vol% to 50 vol% in the composite, fracture strength was decreased due to the increase of carbon fiber, which has a less strength than SiC and molten Si. On the other hand, the fracture toughness was increased with increasing the amount of carbon fiber. According to the polished microstructure, carbon fiber was shown to have a random 3 dimensional arrangement. Moreover, the fiber pull-out phenomenon was observed with the fractured surface, which can explain the increased fracture toughness of the composite containing high content of carbon fiber.