Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.3.142

Processing and Properties of 30 wt% β-Tricalcium Phosphate/Al2O3 Composites  

Jeong, Heecheol (School of Materials Science and Engineering, Andong National University)
Ha, Jung-Soo (School of Materials Science and Engineering, Andong National University)
Publication Information
Korean Journal of Materials Research / v.28, no.3, 2018 , pp. 142-147 More about this Journal
Abstract
${\beta}-Tricalcium$ phosphate (TCP) was added to $Al_2O_3$ to make a biomaterial with good mechanical properties. Using a TCP powder synthesized by a polymer complexation method, $Al_2O_3$ composites containing 30 wt% TCP were fabricated and characterized for densification, phase, microstructure, strength, and fracture toughness. With optimizing the powder preparation conditions, a high densification of 97 % was obtained by sintering at $1350^{\circ}C$ for 2 h. No reaction between the two components occurred and there was no transition to ${\alpha}-TCP$. TCP grains with a size of $2-4{\mu}m$ were well surrounded by $Al_2O_3$ grains with a size of $1{\mu}m$ or less. Strength 61(Brazilian) or 187(3-p MOR) MPa, and fracture toughness 1.7 (notched beam) or 2.5 (indentation) $MPa{\cdot}m^{1/2}$ were obtained, which are large improvements over the strength of $TCP/Al_2O_3$ composites and toughness of TCP and hydroxyapatite in previous studies.
Keywords
${\beta}-tricalcium$ phosphate; $Al_2O_3$; composites; polymer complexation; mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Viswanath and N. Ravishankar, Scr. Mater., 55, 863 (2006).   DOI
2 Y. X. Pang, X. Bao, and L. Weng, J. Mater. Sci., 39, 6311 (2004).   DOI
3 E. Adolfsson, P. Alberius-Henning, and L. Hermansson, J. Am. Ceram. Soc., 83, 2798 (2000).
4 R. Ramachanda Rao and T. S. Kannan, Mater. Sci. Eng. C, 20, 187 (2002).   DOI
5 V. V. Silva, F. S. Lamerias, and R. Z. Dominguez, Compos. Sci. Technol., 61, 301 (2001).   DOI
6 S. Nath, K. Biswas, K. Wang, R. K. Bordia, and B. Basu, J. Am. Ceram. Soc., 93, 1639 (2010).
7 Z. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka, and K. Niihara, Adv. Mater., 13, 214 (2001).   DOI
8 Y-M. Kong, C-J. Bae, S-H. Lee, H-W. Kim, and H-E. Kim, Biomaterials, 26, 509 (2005).   DOI
9 S. Sakka, F. B. Ayed, and J. Bouaziz, IOP Conference Series: Mater. Sci. Eng., 28, 012028 (2012).
10 S. Sakka, J. Bouaziz, and F. B. Ayed, in Advances in Biomaterials Science and Biomedical Applications. ed. R. Pignatello (INTECH, 2013) p.23
11 S-J. Lee, S-I. Ko, M-H. Lee, and N-S. Oh, J. Ceram. Proc. Res., 8, 281 (2007).
12 Jung-Soo Ha, J. Korean Ceram. Soc., 52, 374 (2015).   DOI
13 H-S. Ryu, H-J. Youn, K-S. Hong, B-S. Chang, C-K. Lee, and S-S. Chung, Biomaterials, 23, 909 (2002).   DOI
14 Y-K. Jun, S-H. Hong, and Y-M. Kong, J. Am. Ceram. Soc., 89, 2295 (2006).
15 X. Zhang, F. Jiang, and T. Groth, J. Mater. Sci.: Mater. Med., 19, 3063 (2008).   DOI
16 R. Borges, S. Ribeiro, J. Marchi, H. N. Yoshimura, Mater. Sci. For., 798, 454 (2014).
17 Z. Xihua, L. Changxia, L. Musen, B. Yunqiang, S. Junlong, Ceram. Int., 35, 1969 (2009).   DOI