• Title/Summary/Keyword: high throughput-compatible

Search Result 15, Processing Time 0.024 seconds

Comparison of Conditions for Cell Death-Inducing Agents Using a High Throughput-Compatible Nuclear Staining Assay (핵 염색을 이용한 세포사멸 유도물질 스크리닝의 조건 비교)

  • Lee, Sang-Han
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1312-1315
    • /
    • 2008
  • High throughput-drug screening plays a pivotal role for early stage of drug discovery process. In the course of assay development for screening of cell death-inducing agents, a protocol that is simple, time-saving, and high throughput-compatible was designed which was confirmed that the protocol can be worked by a HTS-compatible machine. In 96-well format, PC-3 cancer cells (1${\times}10^{4}$ cells/ml) were cultured for 24 hr. After 24 h-incubation with various medicinal plants extracts, the cells were then stained with DAPI for 30 min. The fluorescence intensity of the stained cells was measured semi-automatically with a multilabel counter. To test whether the present assay system effectively works, we screened about 850 medicinal plant extracts, and selected 1 positive crude extracts that contained cell death-inducing activity. These results suggest that the protocol is highly amenable to HTS implementation for a cell death-inducing agent(s).

7.7 Gbps Encoder Design for IEEE 802.11ac QC-LDPC Codes

  • Jung, Yong-Min;Chung, Chul-Ho;Jung, Yun-Ho;Kim, Jae-Seok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.419-426
    • /
    • 2014
  • This paper proposes a high-throughput encoding process and encoder architecture for quasi-cyclic low-density parity-check codes in IEEE 802.11ac standard. In order to achieve the high throughput with low complexity, a partially parallel processing based encoding process and encoder architecture are proposed. Forward and backward accumulations are performed in one clock cycle to increase the encoding throughput. A low complexity cyclic shifter is also proposed to minimize the hardware overhead of combinational logic in the encoder architecture. In IEEE 802.11ac systems, the proposed encoder is rate compatible to support various code rates and codeword block lengths. The proposed encoder is implemented with 130-nm CMOS technology. For (1944, 1620) irregular code, 7.7 Gbps throughput is achieved at 100 MHz clock frequency. The gate count of the proposed encoder core is about 96 K.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.

Development of Microfluidic Radioimmunoassay Platform for High-throughput Analysis with Reduced Radioactive Waste

  • Jin-Hee Kim;So-Young Lee;Seung-Kon Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 2022
  • Microfluidic radioimmunoassay (RIA) platform called µ-RIA spends less reagent and shorter reaction time for the analysis compared to the conventional tube-based radioimmunoassay. This study reported the design of µ-RIA chips optimized for the gamma counter which could measure the small samples of radioactive materials automatically. Compared with the previous study, the µ-RIA chips developed in this study were designed to be compatible with conventional RIA test tubes. And, the automatic gamma counter could detect radioactivity from the 125I labeled anti-PSA attached to the chips. Effects of the multi-layer microchannels and two-phase flow in the µ-RIA chips were investigated in this study. The measured radioactivity from the 125I labeled anti-PSA was linearly proportional to the number of stacked chips, representing that the radioactivity in µ-RIA platform could be amplified by designing the chips with multi-layers. In addition, we designed µ-RIA chip to generate liquid-gas plug flow inside the microfluidic channel. The plug flow can promote binding of the biomolecules onto the microfluidic channel surface with recirculation in the liquid phase. The ratio of liquid slug and air slug length was 1 : 1 when the 125I labeled anti-PSA and the air were injected at 1 and 35 µL/min, respectively, exhibiting 1.6 times higher biomolecule attachment compared to the microfluidic chip without the air injection. This experimental result indicated that the biomolecular reaction was improved by generating liquid-gas slugs inside the microfluidic channel. In this study, we presented a novel µ-RIA chips that is compatible with the conventional gamma counter with automated sampler. Therefore, high-throughput radioimmunoassay can be carried out by the automatic measurement of radioactivity with reduced radiowaste generation. We expect the µ-RIA platform can successfully replace conventional tube-based radioimmunoassay in the future.

High Throughput-compatible Screening of Anti-oxidative Substances by Insect Extract Library (약용곤충추출물 라이브러리를 이용한 항산화 활성의 초고속 검색)

  • Park, Ja-Young;Heo, Jin-Chul;An, Sang-Mi;Yun, Eun-Young;Han, Sang-Mi;Hwang, Jae-Sam;Kang, Seok-Woo;Yun, Chi-Young;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.482-488
    • /
    • 2005
  • Oxidant stress is well-known for a pivotal parameter related to neuro-inflammatory diseases including Alzheimer's disease, Parkinson's disease, and ALS (Lou Gehrig's disease). In order to effectively screen for anti-inflammatory agents, we first established the infrastructure of high throughput screening for anti-oxidant agents from medicinal insect library extracted with water, methanol, ethanol, and dimethyl sulfoxide. By the screening system, we found that Tenodera angustipennis Saussure, Pyrocoela rupa Olivier and Papilio maackii Mntris had strong anti-oxidant activity. Moreover, Tenodera angustipennis Saussure and Tenodera aridifolia (Stoll) exhibited protection effects of cellular damage by treatment of an oxidant hydrogen peroxide. Together, the results suggest that some selected hits could be a potential agent against neuro-inflammation, although the in vivo studies should be clearly tested.

A Design of 3D Graphics Lighting Processor for Mobile Applications (휴대 단말기용 3D Graphics Lighting Processor 설계)

  • Yang, Joon-Seok;Kim, Ki-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.837-840
    • /
    • 2005
  • This paper presents 3D graphics lighting processor based on vector processing using pipeline chaining. The lighting process of 3D graphics rendering contains many arithmetic operations and its complexity is very high. For high throughput, proposed processor uses pipelined functional units. To implement fully pipelined architecture, we have to use many functional units. Hence, the number of functional units is restricted. However, with the restricted number of pipelined functional units, the utilization of the units is reduced and a resource reservation problem is caused. To resolve these problems, the proposed architecture uses vector processing using pipeline chaining. Due to its pipeline chaining based architecture, it can perform 4.09M vertices per 1 second with 100MHz frequency. The proposed 3D graphics lighting processor is compatible with OpenGL ES API and the design is implemented and verified on FPGA.

  • PDF

Performance Analysis of the IEEE 802.16 Broadband Wireless Access systems

  • Cho Dong-hoon;Kim Hyun-Sook;Kim Jin-nyun;Ha Nam-koo;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.176-180
    • /
    • 2004
  • In this paper we introduce a bandwidth allocation algorithm and admission control policy for IEEE 802.16 broadband wireless access standard. The proposed mechanism is practical and compatible to the IEEE 802.16. Our scheme provides QoS support to high priority traffic and high throughput in low priority traffic. The simulation show that the proposed scheme includes QoS support for real-time traffic and we presented that BS determine a efficient contention mini-slot size. We have shown the relationship between traffic size and its QoS requirements and the network performance.

  • PDF

Performance Analysis of Switching Strategy in LTE-A Heterogeneous Networks

  • Peng, Jinlin;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.292-300
    • /
    • 2013
  • Nowadays, energy saving has become a hot topic and information and communication technology has become a major power consumer. In long term evolution advanced (LTE-A) networks, heterogeneous deployments of low-power nodes and conventional macrocells provide some new features, such as coverage extension, throughput enhancement, and load balancing. However, a large-scale deployment of low-power nodes brings substantial energy consumption and interference problems. In this paper, we propose a novel switching strategy (NS), which adaptively switches on or off some low-power nodes based on the instantaneous load of the system. It is compatible with the microcells' load balancing feature and can be easily implemented on the basis of existing LTE-A specifications. Moreover, we develop an analytical model for analyzing the performance of system energy consumption, block rate, throughput, and energy efficiency. The performance of NS is evaluated by comparison with existing strategies. Theoretical analysis and simulation results show that NS not only has a low block rate, but also achieves a high energy efficiency.

HeNB-Aided Virtual-Handover for Range Expansion in LTE Femtocell Networks

  • Tang, Hao;Hong, Peilin;Xue, Kaiping
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.312-320
    • /
    • 2013
  • Home evolved Node-B (HeNB), also called a femtocell or a femto base station, is introduced to provide high data rate to indoor users. However, two main problems arise in femtocell networks: (1) Small coverage area of HeNB, which results in limited cell-splitting gain and ping-pong handover (HO) problems and (2) high inter-femtocell interference because HeNBs may be densely deployed in a small region. In this study, an efficient cooperation mechanism called an HeNB-aided virtual-HO (HaVHO) scheme is proposed to expand the coverage area of femtocells and to reduce inter-femtocell interference. The cooperation among neighbor HeNBs is exploited in HaVHO by enabling an HeNB to relay the data of its neighbor HeNB without an HO. The HaVHO procedure is compatible with the existing long term evolution specification, and the information exchange overhead in HaVHO is relatively low. To estimate the signal to interference plus noise ratio improvement, the area average channel state metric is proposed, and the amount of user throughput enhancement by HaVHO is derived. System-level simulation shows that HaVHO has a better performance than the other four schemes, such as lesser radio link failure, lesser ping-pong handover, lesser short-stay handover, and higher user throughput.

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.