• Title/Summary/Keyword: high tensile steel

Search Result 1,069, Processing Time 0.024 seconds

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Long-Term Effect of Chemical Environments on FRP Reinforcing Bar for Concrete Reinforcement (화학적 환경에 노출된 콘크리트 보강용 FRP 보강근의 장기 효과)

  • Park, Chan-Gi;Won, Jong-Pil;Yoo, Jung-Kil
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.811-819
    • /
    • 2003
  • The corrosion of steel reinforcing bar(re-bar) has been the major cause of the reinforced concrete deterioration. FRP(Fiber-reinforced polymer) reinforcing bar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP re-bar is pone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Other potentially FRP re-bar aggressive environments are sea water, acid solution and fresh water/moisture. In this study long-term durability performance of FRP re-bar were evaluated. The mechanical and durability properties of two type of CFRP-, GFRP re-bar and one type of AFRP re-bar were investigated; the FRP re-bars were subjected to alkaline solution acid solution, salt solution and deionized water. The mechanical and durability properties were investigated by performing tensile, compressive and short beam tests. Experimental results confirmed the desirable resistance of FRP re-bar to aggressive chemical environment.

Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel (매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Seong-Jun;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

Light-weight Design and Simulation of Automotive Rear Bumper Impact Beam Using Boron Steels (보론강을 이용한 리어 범퍼 임팩트빔의 경량 설계 및 해석)

  • Kim, Kee-Joo;Han, Chang-Pyung;Lim, Jong-Han;Lee, Young-Suk;Won, Si-Tae;Lee, Jae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.98-102
    • /
    • 2012
  • Increasing the fuel economy has been an inevitable issue for the development of new cars, and one of the important measures to improve the fuel economy is to decrease the vehicle weight. In order to obtain this goal, the researches about lighter, stronger and the well impact absorbing bumper impact beam have been studied without sacrificing bumper safety. In this study, the overall weight reduction possibility of rear bumper impact beam could be examined based on the variation of frontal, offset and corner impact crash capability by substituting a ultra high strength steel material (boron steel ) having tensile strength of 1.5 GPa grade instead of conventional steels. In addition, the section variations (open section, closed section, open section with 5 stays) of the bumper impact beam structure were examined carefully. It could be reached that this analysis could be well established and be contributed for design guide and the optimum design conditions of the automotive rear bumper impact beam development.

A Study on Hot Straining Embrittlement of Coarse Grained HAZ in Steel Weldments (강 용접열영향부 조립역의 열변형취화에 관한 연구)

  • 정세희;김태영;임재규
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.22-31
    • /
    • 1985
  • Hot straining embrittlement is one of the most important factors which cause the brittle fracture initiation even in the service temperature in the case of mild steel and high tensile steel. Therefore it is necessary to analyze thoroughly the hot straining embrittlement occurred in weld HAZ of the structural steels. The behaviors of plastic deformation and fracture toughness at the notch tip of the hot strained weld HAZ in structural steels (SB 41 KS, SA 588-Grade A ASTM) have been studied by the recrystallization technique and crack opening displacement (COD) test method. The obtained results are summarized as follows; 1. The plastic zone is formed at the notch tip of weld HAZ owing to nomotonic and cyclic hot stran, and the maximum plastic strain increases with the accumulated hot straining amounts. 2. The distribution of the effective strain at the plastic deformed zone in HAZ can be determined as follows; (.epsilon. over bar $_{p}$ )$_{\chi}$=.epsilon. over bar $_{cr}$ ( $R_{/chi}$/.chi.)$^{m}$ where, .epsilon. over bar $_{cr}$ : (SB 41; .epsilon. over bar $_{cr}$ = 0.2, SA 588; .epsilon. over bar $_{cr}$ = 0.1) 3. The embrittlement of weld HAZ in SB 41 and SA 588 is influenced by hot strain, and the degree of embrittlement becomes deeper with hot straining amounts. 4. The embrittlement of weld HAZ of SB 41 is not influenced by the hot straining amounts until .epsilon. over bar $_{max}$ = 0.36, $R_{\chi}$ = 0.065mm, however the embrittlement of structure in SA 588 is considerably influenced even by a small quantity of the hot straining amounts.s.

  • PDF

Fatigue Strength of In-plane Welded Attachments (면내 거셋 용접연결부의 피로강도)

  • Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.629-637
    • /
    • 2003
  • This s paper presented the results of the three phases of fatigue tests to determine the fatigue strength of in-plane welded gusset joints, which are the most common details inevitably existing in the region of high stress range. A total of 57 fatigue specimens with varying thickness and strengths were made and tensile fatigue tests performed. One full-scale beam fatigue test was also performed. The validity of the fatigue strength of those details in the specification was confirmed, with the effects of thickness of flanges and welded attachments, length of attachments, and strength of applied steel examined. The characteristics of crack initiation and propagation were also observed. The test result was evaluated by comparing it with other test data and fatigue criteria of other countries. To determine the degree of stress concentration in the weld toe depending on geometric configuration such as attachment length and transition radius, analyses were performed. Compared to the present specification, analytical results indicate the need to revise and subdivide the detail categories.

Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향)

  • Park, Jeong Min;Jeon, Jin Myoung;Kim, Jung Gi;Seong, Yujin;Park, Sun Hong;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Designing an innovative support system in loess tunnel

  • Wang, Zhichao;Xie, Yuan;Lai, Jinxing;Xie, Yongli;Su, Xulin;Shi, Yufeng;Guo, Chunxia
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-266
    • /
    • 2021
  • The sufficient early strength of primary support is crucial for stabilizing the surroundings, especially for the tunnels constructed in soil. This paper introduces the Steel-Concrete Composite Support System (SCCS), a new support with high bearing capacity and flexible, rapid construction. The bearing characteristics and construction performance of SCCS were systematically studied using a three-dimensional numerical model. A sensitivity analysis was also performed. It was found that the stress of a π-shaped steel arch decreased with an increase in the thickness of the wall, and increased linearly with an increase in the rate of stress release. In the horizontal direction of the arch section, the nodal stresses of the crown and the shoulder gradually increased in longitudinally, and in the vertical direction, the nodal stresses gradually decreased from top to bottom. The stress distribution at the waist, however, was opposite to that at the crown and the shoulder. By analyzing the stress of the arch section under different installation gaps, the sectional stress evolution was found to have a step-growth trend at the crown and shoulder. The stress evolution at the waist is more likely to have a two-stage growth trend: a slow growth stage and a fast growth stage. The maximum tensile and compressive stresses of the secondary lining supported by SCCS were reduced on average by 38.0% and 49.0%, respectively, compared with the traditional support. The findings can provide a reference for the supporting technology in tunnels driven in loess.

Improvement of Heat Resistant of Adhesion between m-Aramid Sheet and Metal Materials using Epoxy/Phenolic Resin (Epoxy/Phenolic resin을 활용한 메타-아라미드 시트지와 금속 소재의 내열접착성 향상)

  • Kang, Chan Gyu;Chae, Ju Won;Choi, Seung Jin;Lee, Ji Su;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.157-164
    • /
    • 2022
  • This study tried to analyze the heat resistance properties by blending epoxy and phenolic resin in a certain ratio, and to analyze the adhesive properties at the time of metal-polymer hetero-adhesion by applying Epoxy-phenolic resin between a silicon steel sheet and m-aramid sheet, the viscosity, adhesive peel strength, and adhesive cross section were measured using a rotational rheometer, a tensile tester(UTM), and a field emission scanning electron microscopy(FE-SEM). The thermal stability and heat resistance were confirmed by measuring the mass loss according to the temperature increase using Thermogravimetric analysis(TGA). After blending with epoxy and Phenolic resin(1:0.25 ratio) curing at 110℃ for 10 min, high adhesive strength was improved more than 40% compared to the adhesive strength using epoxy alone. When the space between the silicon steel sheet and m-aramid sheet, which is created during curing of the E-P blend, is cured with a slight weight, it is possible to control the empty space and improve adhesion.