• Title/Summary/Keyword: high tensile steel

Search Result 1,069, Processing Time 0.023 seconds

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Design of High Strength Underground FRP Septic Tank Stiffened by Circular Steel Pipe (원형강관으로 보강된 지중매립형 FRP 개인하수 처리시설의 설계)

  • Cho, Kwang Je;Kim, Sung Bo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.171-181
    • /
    • 2012
  • The design of high strength underground septic tank stiffened by steel pipe is presented and the ultimate behavior is investigated according to the full scale experiments for three types of specimens. The limitation of the current design specification are pointed out and the general design procedure of private sewage treatment facility are newly developed considering thickness of FRP shell, types of steel pipe stiffer and diaphragm wall. The direct tensile and bending test for FRP material of septic tank were performed. The increase effect of ultimate strength due to the circular steel pipe are investigated by the full scale field test and compared with the results by the finite element analysis.

A Study on the Measurement of Steel Corrosion in Mortar by TEM Method (TEM법에 의한 모르타르 중의 철근 부식 측정에 관한 연구)

  • Lee Sang-Ho;Han Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.59-65
    • /
    • 2006
  • Steel, as a reinforcing mechanism in concrete, provides the tensile strength that is lacking in concrete, alone, and the high alkaline environment (pH 12.5) in concrete offers satisfactory protection against most corrosion of the steel. However, the corrosion of reinforcing steel in concrete can occur by chloride attack or carbonation, and it can cause a loss of integrity a section and concrete failure through cracking and spalling. In this study, a transient electro magnetic method (TEM) of a nondestructive technique is adapted to study the measuring method of steel corrosion in mortar. The sensor was made of an enameled wire, with a diameter of 0.25mm and anacril. He sensor configuration used was a coincident loop type. The secondary electro motive force (2nd EMF) was measured with SIROTEMIII, which equipped the accelerator. The accelerator allowsthe transmitter to turn off approximately $10\sim15$ times faster than normal. The high-resolution time series, used for very shallow or a high resistivity investigation was selected. After steels were corroded by the salt spray, during 4, 8, 15 and 25 days, they were embedded in mortar. The content results acquired in this study are as follows. The variation of the secondary electro motive force (2nd EMF) was shown by the change of steel surface with different corrosion time steel. It was confirmed that measurement of steel corrosion in mortar by a transient electro-magnetic method (TEM) can be possible.

Effect of Alloying Elements on Mechanical Properties and Microstructure of Steel Bar Fabricated by Endless Bar Rolling System with Flash Butt Welding (플래시버트 용접과 연속열간압연법으로 제조된 철근의 기계적 성질과 미세조직에 미치는 합금원소의 영향)

  • Kim, Ki-Won;Cho, Seung-Jae;Kang, Chung-Yum
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.52-59
    • /
    • 2009
  • Flash butt welding is applied in many industries. New technology was developed recently for joining billets which called "EBROS (Endless Bar Rolling System)". After reheating billets in furnace, two billets were joined using flash butt welding. The objective of this study was to investigate the effect of alloying elements on mechanical properties of flash butt welded zone of hot rolled steel bar. The tensile properties on welded zone of Fe-Mn steel and Fe-Mn-V steel were dropped as compared with non-welded zone. Fe-Mn-Nb steel was opposed to the former. It was found that the white band at the welded zone had high ferrite volume fraction and large ferrite grain size. The vertical white band between flash butt welded billets was transformed into an arrowhead it of steel bar. According to this band, softening has been appeared. There was a interesting phenomenon with HAZ of Fe-Mn-Nb Steel, 40nm scale of particles were observed and hardness of HAZ was higher than non-welded zone.

Low cycle fatigue behaviour of TMCP steel in as-received and welded states (TMCP 고장력강재와 그 용접부의 저사이클피로특성에 관한 연구)

  • 김영식;한명수
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.46-57
    • /
    • 1990
  • TMCP steel manufactured by controlled rolling followed by accelerated cooling process is known to have extra-ordinary mechanical properties such as tensile strength and toughness. However, there is much uncertainty about the fatigue fracture characteristics, especially, in the welded state of this steel. In case of this steel, the softening zone by welding is generated in heat affected zone in contrast with the case of conventional normalized high strength steel. This softening zone is considered to play significant roles in low cycle fatigue fracture of the welded part of this steel. In this paper, the low cycle fatigue behaviors of TMCP steel were inspected in as-received and welded state using the smooth specimen. The fatigue life-time was seperately investigated on the basis of failure of the specimen and crack initiation which is detected by differential strain method. Moreover, the low cycle fatigue characteristics of TMCP steel were quantitatively compared with those of the conventional normalized steel of same strength level.

  • PDF

Evaluation of Fatigue Behavior for Laser Welded High Strength Steel Sheets (SPFC590) (고장력 강판(SPFC590)의 레이저 용접부 피로거동 평가)

  • Heo, Cheol;Kwon, Jong-Wan;Cho, Hyun-Deog;Choi, Sung-Jong;Chung, Woo-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2012
  • Deep and narrow welds can be produced by laser welding at high welding speeds with a narrow heat-affected zone (HAZ) and little distortion of the workpiece. This study aims to evaluate the usefulness of laser welding at automobile component manufacture. Microstructure observation, hardness test, tensile test and fatigue life test are performed by using the fiber laser welded SPFC590 steel sheets which is used widely in the manufacture of automotive seat frame. Three kinds of specimens are only a SPFC590 steel plate, quasi-butt joint plate and lap joint plate by laser welding. The following results that will be helpful to understand the static strength, fatigue crack initiation and growth mechanism were obtained. (1) The tensile strength of quasi butt joint specimens nearly equal to base metal specimens, but lap joint specimens fractured in shear area of weld metal. (2) The fatigue strength of quasi-butt joint specimen was approximately 8 percent lower than that of the base metal specimens. Furthermore, the lap joint specimens were less than 86 percent of the base metal specimens. (3) The lap joint fatigue specimens fractured at shear area in high level stress amplitude, while fractured at normal area in low level stress amplitude. From these results, the applicability of the laser welding to the automobile component is discussed.

Residual Stress in Welds of High Strength Steel( POSTEN60, POSTEN80) (고강도강(POSTEN60, POSTEN80) 용접접합부의 잔류응력)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.519-528
    • /
    • 2004
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to reproduce the effect of phase transformation on the relaxation of welding residual stress. Also we carried out the analysis of welding residual stress in welds of similar or dissimilar steels considering the effect of residual stress relaxation due to phase transformation.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Fabrication of Graded-Boundary Ni/Steel Material by Laser Beam (레이저빔에 의한 조성구배계면 Ni/Steel 재료의 제조)

  • 안재모;김도훈
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1999
  • This work was carried out as a fundamental experiment to fabricate a Graded-Boundary Ni/Steel material using a laser beam. A Ni sheet was placed on a steel substrate, and then a series of high power $CO_2$ laser beams were irradiated on the surface in order to produce a homogeneous alloyed layer. The processing parameters were : 4 ㎾ laser power, 2m/min traverse speeds, -2mm defocuing, 17 l/min sheiding gas flow rates. The sequential repetition of the laser surface alloying treatment up to 4 times, resulted in about 5mm thick of fair compositional gradient systems. In order to determine the microstructure, phase and compositional profiles in this material, optical microscopy, XRD and EDS were used. The compositions varied from 66% to 0% for Ni and 34% to 100% for Fe in this material The microstructures were typical morphologies of rapid solidification and solid-state cooling. Since compressive stress was formed in the heat affected region due to martensitic transformation, while relative tensile stress was developed in the alloyed region, cracks were formed between the alloyed region and the substrate region.

  • PDF

Effect of the Cooling Rates on the Corrosion Resistance and Phase Transformation of 14Cr-3Mo Martensitic Stainless Steel

  • Park, Jee-Yong;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • Martensitic stainless steel is used when mechanical properties such as high tensile strength and hardness are required. Medium carbon-contained martensitic stainless steel which contains more than 0.2 wt% of carbon should be heat-treated and quenched at the temperature where undissolved carbides are totally dissolved into the matrix. In particular, the dissolution and reprecipitation behaviors of various forms of carbides are affected by such parameters as heating rate, heating temperature, duration time and cooling rate. This study is to investigate the effects of heat treatment parameters of 14Cr-3Mo martensitic stainless on corrosion resistance and phase transformation in relation to the dissolution and reprecipitation of carbides.