• Title/Summary/Keyword: high tensile steel

Search Result 1,068, Processing Time 0.039 seconds

Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향)

  • Lee, Seung-Wan;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel (ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구)

  • Baek, Jung-Hwan;Choi, Byung-Ky
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.

The Evaluation of Fatigue Life for Multi-lap Spot Weldment of Automobile Steel Sheet Using DCPDM (DCPDM에 의한 자동차용 다층 점용접물의 피로수명 평가)

  • Kim, Hoe-Hyeon;Park, Jeong-Hun;Kim, Eun-Seong;Baek, Seung-Se;Gwon, Il-Hyeon;Yu, Hyo-Seon;Yang, Seong-Mo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.247-249
    • /
    • 2005
  • Evaluation and prediction of fatigue crack initiation life in EZNCEN(Galvanized steel sheet) and HS40R(High strength steel sheet) tensile-shear spot weldment were studied by using DCPDM(DC Potential Drop Method)

  • PDF

A Study on the Cutting Phenomena in CNC Gas Cutting Under Various Cutting Conditions (고장력 강판의 CNC 가스 절단시 절단조건 변화에 따른 절단현상에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.186-191
    • /
    • 2002
  • In the CNC gas cutting of steel plate, the cutting quality are strongly dependent on the various cutting conditions. The cutting tests of high tensile steel plate(AH36) were carried out using CNC gas cutting machine at various cutting conditions such as cutting speed, steel plate thickness, distance between tip and specimen etc. The kerf width and the surface roughness of cutting surfaces are examined. The photographs of cutting surface and cutting section are also analyzed.

  • PDF

Experimental and numerical study on tensile capacity of composite cable-girder anchorage joint

  • Xuefei Shi;Yuzhuo Zhong;Haiying Ma;Ke Hu;Zhiquan Liu;Cheng Zeng
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.215-230
    • /
    • 2023
  • Cable-girder anchorage joint is the critical part of cable-supported bridges. Tensile-plate anchorage (TPA) is one of the most commonly used types of cable-girder anchorage joints in steel girder cable-supported bridges. In recent years, it has been proposed by bridge designers to apply TPA to concrete girder cable-supported bridges to form composite cable-girder anchorage joint (CCGAJ). In this paper, the mechanical performance of CCGAJ under tensile force is studied through experimental and numerical analyses. Firstly, the effects of the external prestressing (EP) and the bearing plate (BP) on the mechanical performance of CCGAJ were investigated through three tests. Then, finite element model was established for parametrical study, and was verified by the experimental results. Then, the effects of shear connector forms, EP, BP, vertical rebar rate, and perforated rebar rate on the tensile capacity of CCGAJ were investigated through numerical analyses. The results show that the tensile capacity of CCGAJ depends on the first row of PR. The failure mode of CCGAJ using headed stud connectors is to form a shear failure surface at the end of the studs while the failure mode using PBLs is similar to the bending of a deep girder. Finally, based on the strut-and-tie model (STM), a calculation method for CCGAJ tensile capacity was proposed, which has a high accuracy and can be used to calculate the tensile capacity of CCGAJ.

Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel

  • Brnic, Josip;Canadija, Marko;Turkalj, Goran;Krscanski, Sanjin;Lanc, Domagoj;Brcic, Marino;Gao, Zeng
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.875-888
    • /
    • 2016
  • The proper selection of materials for the intended use of the structural member is of particular interest. The paper deals with determining both the mechanical properties at different temperatures and the behavior in tensile creep as well as fatigue testing of tensile stressed specimens made of low alloy 42CrMo4 steel delivered as annealed and cold drawn. This steel is usually used in engineering practice in design of statically and dynamically stressed components. Displayed engineering stress - strain diagrams indicate the mechanical properties, creep curves indicate the material creep behavior while experimental investigations of fatigue may ensure the fatigue limit determination for considered stress ratio. Also, hardness testing provides an insight into material resistance to plastic deformation. Experimentally obtained results regarding material properties were: tensile strength (735 MPa / $20^{\circ}C$, 105 MPa / $680^{\circ}C$), yield strength (593 MPa / $20^{\circ}C$, 76 MPa / $680^{\circ}C$). Fatigue limit in the amount of 532.26 MPa, as maximum stress at stress ratio R = 0.25 at ambient temperature was calculated on the basis of experimentally obtained results. Regarding the creep resistance it is visible that this steel can be treated as creep resistant at high temperatures (including $580^{\circ}C$) when applied stress is of low level (till 0.2 of yield stress).

Fracture Simulation of Low-Temperature High-Strength Steel (EH36) using User-Subroutine of Commercial Finite Element Code (상용 유한요소코드 사용자-서브루틴을 이용한 저온용 고장력강 (EH36)의 파단 시뮬레이션)

  • Choung, Joonmo;Nam, Woongshik;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.34-46
    • /
    • 2014
  • This paper discusses a new formulation for the failure strain in the average stress triaxiaility domain for a low-temperature high-strength steel (EH36). The new formula available at a low average stress triaxiality zone is proposed based on the comparison of two results from tensile tests of flat type specimens and their numerical simulations. In order to confirm the validity of the failure strain formulation, a user-subroutine was developed using Abaqus/Explicit, which is known to be one of the most popular commercial finite element analysis codes. Numerical fracture simulations with the user-subroutine were conducted for all the tensile tests. A comparison of the engineering stress-strain curves and engineering failure strain obtained from the numerical simulation with the user-subroutine for the tensile tests revealed that the newly developed user-subroutine effectively predicts the initiation of failure.

Effects of Tempering on Tensile Properties of Medium-Carbon Low-Alloy Steels (중탄소 저합금강의 인장성질에 미치는 템퍼링의 영향)

  • Lee, Young-Kook;Krauss, George
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.327-337
    • /
    • 1999
  • A series of Ni-Cr-Mo alloy steels were austenitized, quenched to martensite, and tempered at various temperature and time conditions. Tensile testing was conducted at room temperature with cylindrical specimens, and hardness was measured using Rockwell hardness tester. In the tempering stage I, high strain hardening and yield strength accounted for the high ultimate strength and hardness. In the tempering stage II, strengths and hardness linearly decreased with increasing tempering temperature. Specimens tempered in the temperin stage III showed incipient discontinuous yielding and tensile strengths only slightly higher than yield strengths. Ductilities decreased slightly in specimens tempered in the tempered martensite embrittlement range, and severely decreased in specimens tempered for 10 hours at $500^{\circ}C$ in the temper embrittlement range. Specimens tempered at $600^{\circ}C$ for 10 hours showed recrystallized microstructures, a number of fine dimples, and increased strain hardening, probably due to the precipitation of alloy carbides. The simple formulae for the mechanical properties of these steels were suggested as a function of carbon content and Hollomon-Jaffe tempering parameter.

  • PDF