• Title/Summary/Keyword: high tensile steel

Search Result 1,079, Processing Time 0.033 seconds

Flexural Behavior of RC Beam Using High Volume Fly-Ash Cement (다량치환된 플라이애시 시멘트를 사용한 철근콘크리트 보의 휨거동)

  • Ahn, Young-Sun;Cha, Yeong-Dal
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only. However, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%). In order to evaluate the HVFAC flexural behavior, Analytical model was proposed and the computer program was developed. There were no differences between test results and analysis results. So, the proposed analytical model was reasonable.

A case study on the optimal shafting alignment concerning bearing stiffness for 10,100 TEU container carrier (베어링 강성을 고려한 10,100 TEU 컨테이너 운반선의 최적 추진축계 배치에 관한 사례 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Damages of the main engine aftmost bearing and the after stern tube bearing tend to increase due to misalignment. And as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. And this is the reason that more sophisticated shaft alignments are required. In this study, the optimum shafting alignment calculation was carried out, considering the thermal expansion effect, exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shaft bearing for shaft alignment. and as the main subject in this study, the elastic deformation on intermediate shaft and main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analyzed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programs of both Korean Register of Shipping and Det Norske Veritas, their reliability were reviewed.

A study of the analysis of shaft alignment considering hull deflections for 50,000 DWT oil/chemical tankers (5만 DWT 석유화학제품운반선의 선체변형을 고려한 추진축계 정렬해석 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.191-197
    • /
    • 2016
  • The shaft system of a vessel becomes stiffer because of larger engine power, whereas the hull structure becomes more flexible because of scantling optimization conducted by using high-tensile thick steel plates. The draught-dependent deformation of the hull affects each bearing offset and reaction force comprising the subsequent shaft system. This is the reason that more sophisticated shaft alignments are required. In this study, an FE analysis performed under the expected operating conditions of two (2) vessels, as maximum draught change and to analyze the shaft alignment using the relative bearing offset change, which was derived from an FE analysis of the 50,000 DWT oil/chemical tanker, which has become an eco-friendly vessel in recent years. Based on this, the influence of the hull deflection on the bearing offset was reviewed against results for shaft alignment conditions.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Development of Evaluation System for Fatigue Strength on the Connection Between Longitudinals and Transverse Web (유조선 종통보강재와 횡늑골 연결부의 피로강도 평가용 자동화 시스템 개발)

  • Hong, Ki-Sup;Kim, Sung-Chan;Ahn, Jae-Wook;Kim, Seong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.510-519
    • /
    • 2009
  • Ship structure is composed of the welded mixture members which are plate and stiffeners. Ship structure is also influenced by variable loadings such as wave and inertia load. There have been several fatigue damage problems on the connection between longitudinal and transverse web due to wide usage of high tensile steel and adoption of wide web space to improve shipbuilding productivity. It is impossible to estimate the fatigue lives for all connection details through refined fatigue analysis. It is necessary to use the simplified approach for the fatigue life estimation of the connection details. PLUS analysis, which is suggested by the classification society, is one of the simplified approaches and is widely adopted to get fatigue lives for the connection details along whole cargo hold area. However, ship building yards still have difficulties to get fatigue lives due to large amount of calculation and time even if this approach reduce the time and amount of calculation. This paper treats the computing system developed to reduce efforts of estimating the fatigue lives. The influence factors of mean shear stress and local dynamic pressure are easily calculated and fatigue lives for all hot spots can be estimated automatically by the developed computing system. It is possible to reduce computing time and efforts to get the fatigue lives for the connection details between longitudinals and transverse webs along the ship. This system was applied to get fatigue lives on the connection details of a VLCC and verified the availability.

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.

Prediction of Shear Strength of FRP Concrete Beams without Stirrups by Artificial Neural Networks (인공신경망에 의한 스터럽 없는 FRP 콘크리트 보의 전단강도 예측)

  • Lee, Cha-Don;Kim, Won-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.801-804
    • /
    • 2008
  • Fiber reinforced plastics (FRP) are light in weight, non-corrosive and exhibits high tensile strength. FRPs having superior material properties to corrosive steels have been widely replacing steel bars or tendons used in concrete structures as flexural reinforcements. Although current design guidelines for estimating shear strength of FRP concrete beam follow the format of conventional reinforced concrete design method, there are noticeable differences among the existing formulas in calculating the contributions of concrete to shear resistance. In this paper, the artificial neural network (ANN) technique is employed as an analytical alternative to existing methods for predicting shear capacity of FRP concrete beams. Influential factors on shear strength were identified through literature review and input in ANN and the ANN was trained for the target ultimate shear obtained from database. The results from ANN were compared with existing formulas for its accuracy. It was found that the developed ANN were more closely predicting the test data than those of the currently available predictive equations.

  • PDF

A Study of Fabrication and Strengthening of Plate Girder (판항교제작(鈑桁橋製作) 및 보강(補强)에 관한 연구(硏究))

  • Suh, Young Kap
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.39-51
    • /
    • 1983
  • Increasing of load on the highway bridge necessitate the strengthening of load capacity of bridge by some method. The method of strengthening is the usage of pre-stressing high tensile steel line. Having finished pre-stressing work, line is anchored both end, then it composed a member of bridge structure when loading. This paper includes the method and mechanism of strengthening of I-beam span(same originality of plate girder), could be summerized as following; (a) Simple girder, 2 span and 3 span continuous girder increasing the load capacity by more than 80 % for concentrated load. (b) For uniformly distributed load, when all span loaded, load capacity is increase more than 80% to 100% except 3 span continuous.

  • PDF

Fatigue Strength Analysis and Reliability Analysis of D/H VLCC (D/H VLCC의 피로강도해석과 피로 신뢰성해석)

  • Yang, P.D.C.;Lee, J.S.;Yoon, J.H.;Seo, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.64-74
    • /
    • 1997
  • The necessity and importance of fatigue failure to variable load has been appreciated as the structural design technique develops and use of high tensile steel is increasing. This is much more appreciated for a large ship such as VLCC. The rigorous fatigue analysis and safety assessment should be, hence, carried out at the design stage to avoid the possibility of fatigue failure and to achieve the design result having a sufficient structural safety to fatigue strength. This paper deals with an efficient spectral fatigue analysis of ship structures by introducing the concept of stress influence coefficient. In the process included are probabilistic loading analysis, evaluation of long-term distribution of stress range and estimation of fatigue life applying the spectral fatigue analysis. An integrated computer program has been developed in which reliability analysis to fatigue strength is also included and has been applied to D/H VLCC.

  • PDF

A Study on the Corrosion Fatigue Crack Behavior of SPV 50 for Gas Storage Tanks in Marine Environment (해양환경 중에서 가스저장탱크용 SPV 50강재의 부식피로균열(腐蝕疲勞龜裂) 거동(擧動)에 관한 연구(硏究))

  • Lim, Uh-Joh;Shin, Jong-Dae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.198-208
    • /
    • 1997
  • Recently, with rapid increase of gas demand, there occurs much interest their security of safety in the gas storage tanks and pressure vessels etc. In order to solve the problems, the occurrence of corrosion fatigue crack and the propagation behavior must be investigated. Especially the occurrence of corrosion fatigue crack and the propagation behavior in the part which has concentrated stress or defects, must be studied more carefully. In this paper, the high-tensile steel of SPV 50 which is much used for building the LPG storage tanks was tested by the use of a plane bending corrosion fatigue tester under the various marine environment and in the air. These experiments were carried out to investigate the surface crack propagation behavior, the value of experimental constant for Paris' rule(da/dN=$C(K)^m$), the crack depth propagation rate and the accelerative factor of the surface crack propagation rate. The main results obtained are as follows ; 1) As the specific resistances of marine environment decreases, the exponential value of slope m of Paris' rule(da/dN=$C(K)^m$) decreases and the value of intercept C increases. 2) The surface crack propagation rate and the crack depth propagation rate are delayed, as the specific resistances of marine environment is increased. 3) The accelerative factor of the surface crack propagation rate by corrosion fatigue is higher, according as the stress intensity factor range ${\Delta}K_A$ is small.

  • PDF