• Title/Summary/Keyword: high temperature strength

Search Result 3,002, Processing Time 0.039 seconds

Concrete Strength Estimating at Early Ages by the Equivalent Age

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.81-85
    • /
    • 2002
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management method in korea. There are several methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength gradually as a result of chemical reactions between cement and water; and for a specific concrete mixture, strength at any age and at normal conditions is related to the degree of hydration. The rate of hydration and, therefore, strength development of a given concrete will be a function of its temperature. Thus, strength of concrete depends on its time-temperature history. The goals of the present study are to investigate a relationship between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature and predict strength of concrete.

  • PDF

Temperature and Property Control of High Strength Steel in Hot Strip Mills (열간압연 고강도강의 온도 및 재질제어)

  • Park, Cheol-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper proposes a cooling stop temperature control(CST) and a phase transformation control(PTR) which aim at obtaining the uniform temperature and quality along the longitudinal direction of the high strength steel on the run-out table(ROT) process. The problems of the temperature control are analyzed for the conventional steel and the new control concepts are derived from a time-temperature transformation(TTT) diagram. The proposed control technologies are verified from the simulation results under the temperature prediction model by the heat transfer governing equation, and the temperature estimation simulator. It is shown through the field test of the hot strip mills that the phase transformation ratio of the high strength steel is considerably improved by the proposed temperature controls.

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

A study on the mechanical properties of the polymer cement mortar in a high temperature region (고온영역에서의 폴리머시멘트모르타르의 역학적 특성연구)

  • Yoon, Ung-Gi;Seo, Dong-Goo;Kwon, Young-Jin;Kim, Hyung-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.113-114
    • /
    • 2014
  • Though polymer cement mortar is widely used to repair or reinforce concrete as it has superior adhesion, dense internal structure, chemical resistance, and workability in comparison to those of general cement mortar, studies on its behaviors in high temperature environment such as fire is urgently required. Accordingly, in this experiment, the degrees of reduction in the compressive strength at different temperatures was grasped applying ISO834 Heating Curve, and the effect of polymer content and type on compressive strength could be determined. As a result of this experiment, it is found that polymer type and content have a big effect on reduction of compressive strength in high temperature range, and not only the dynamic characteristics but also the combustion characteristics in high temperature range are required to be studied considering occurrence of a fire in the future.

  • PDF

An Experimetal Study on Strength Characteristics of Mass Concrete Cast with High-Strength Concrete for Precast Application. (프리캐스트 콘크리트 적용을 위한 고강도 매스 콘크리트 부재의 강도 특성에 관한 실험적 연구)

  • Park, Jo-Hyun;Kim, Sung-Jin;Paik, Min-Su;Lee, Seung-Hoon;Park, Byung-Keun;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, air compression and rationalization of construction are required. In general, product management test of precast concrete member, specimen for management cured in the same condition with precast concrete member is substitutively used for strength test. However, large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different temperature history and strength characteristics. Concerning this, in order to suggest temperature history and strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between management specimen with similar temperature history and core strength, and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

A Study on the Fundamental Properties of High Strength Concrete Using Silica Fume (실리카흄 사용 고강도콘크리트의 기초적 성질에 대한 연구)

  • 문한영;김기형;문대중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.11-17
    • /
    • 1993
  • In this study, the fundamental properties of High-Strength Concrete(HSC), such as the slump loss, the temperature increment, the strength development, are considered by experiment. In reducing the temperature and the slump loss, and developing the strength of HSC, the application of silica fume as an admixtures is very effective. And when gypsum is added, the slump loss is reduced and the strength of HSC is improved remarkably, but the temperature of concrete is increased, thus a more study to reduce the temperature increment is required

  • PDF

The residual mechanical properties evaluation according to temperature of the amorphous metallic fiber reinforced high strength concrete (비정질강섬유 보강 고강도 콘크리트의 온도별 잔존 역학적 특성 평가)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.98-99
    • /
    • 2020
  • This study is aim to assess mechanical properties which is highly related to structural safe and durability of 100MPa high strength concrete mixed with amorphous metallic fiber. All specimens were heated with low velocity heating rate(1℃/min.), residual compressive strength and residual flexural strength was evaluated. The specimens were cooled down to room temperature after heating. As a result, in the case of 100MPa high-strength concrete, the residual compressive strength enhancing effect of amorphous metallic fiber has showed with the mix proportion of fiber. In addition, residual flexural strength showed more regular pattern before 300℃ then residual compressive strength, but simillar decreasing behavior was shown after 300℃ like residual compressive strength. Further study about fiber pull-out behavior and fiber mechanical, chemical property change due to temperature is needed.

  • PDF

Physical Properties of 50MPa and 80MPa Ternary High Strength Concretes before and after Concrete Pumping

  • Lee, Bum-Sik;Kim, Seong-Deok;Jun, Myoung-Hoon;Park, Sung-Sik;Park, Su-Hee;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • At the Korea Land and Housing Corporation(LH), concretes with high design strength of 50 MPa and 80 MPa that are composed only of ordinary Portland cement, blast furnace slag, and fly ash are developed. To determine whether the developed high strength concretes have the same properties when they are produced in batch plant(B/P) condition in the ready mixed concrete plant, and as existing high strength concretes, field tests are performed and material properties are evaluated. To investigate the material properties of the high strength concretes before and after pumping, compressive strength, flowability, air content, hydration temperature, pumping and compactability are evaluated. In field tests, before and after pumping, flowability satisfied the relevant criteria. In terms of air content, while it was slightly decreased after pumping, it satisfied the requirements. Hydration temperature criteria were satisfied, and compactability was excellent as well. The study found that the developed ternary high strength concretes have the same properties as existing high strength concretes. They can also be useful for the construction of high-rise buildings, as they are economical.

A Fundamental Study on the Strength Development in Cement Mortar under Initial Curing Temperature (초기양생온도에 따른 시멘트 모르터의 강도발현에 관한 기초적 연구)

  • 백민수;이영도;임남기;김성식;이종균;최문식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.157-165
    • /
    • 1997
  • In this experiment, there is a purpose to analysis the relationship of feature of compressive strength after fixing of remarkable element under the condition of initial curing temperature. According to this experiment, we get to the fallow result. In case of highest curing temperature, 3-day-strength become high but last revelation of strength become low among the condition of initial curing temperature, the highest curing temperature have an effect on revelation of strength by the application of cumulative temperature, we can get the shape of revelation of strength.

  • PDF

Microstructure and High Temperature Strength of Rapidly Solidified Al-8wt%Fe Alloy (급속응고된 Al-8wt%Fe 합금의 미세조직 및 고온강도)

  • 최병준
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.192-198
    • /
    • 1998
  • Microstructure and mechanical properties were examined on rapidly solidified Al-8wt%Fe alloy. High temperature strength test was also undertaken, and it is shown that the refinement in microstructure resulting from extremely rapid cooling rates gives rise to improved high temperature strength, but the elongation to fracture of this material decreases with increasing temperature, particularly in the temperature range up to 30$0^{\circ}C$. Specimens heat-treated for 100 hrs were analyzed with TEM micrographs to understand the thermal stability of this material.

  • PDF