• Title/Summary/Keyword: high temperature aging

Search Result 430, Processing Time 0.033 seconds

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

A Study on the High Temperature Tensile Characteristics of Lap Weld of 15Cr Ferritic Stainless Steels (15Cr 페라이트계 스테인리스강의 겹침용접부 고온인장 특성에 관한 연구)

  • Lee, Young-Gi;Lee, Gyeong-Cheol;Kim, Jae-Seong;Han, Do-Seok;Oh, Seung-Taek;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.60-65
    • /
    • 2008
  • Ferritic stainless steels of the 400 series have been available for automotive exhaust system, heat exchanger, radiater etc. in various industrial because heat resistance, corrosion resistance and strength are excellent. Especially, automotive exhaust system is required good heat resistance because typical temperature of exhaust system exposed during operation of engine is reach up to $800^{\circ}C$. However, research for effect of high temperature in ferritic stainless steels is not enough. In this study, high temperature tensile properties of lap weld of ferritic stainless steels(STS 429) were investigated. In accordance with heat input, lap welds had been produced and were evaluated at high temperature($800^{\circ}C$) to compare high temperature tensile properties. In addition, room temperature tensile tests were carried out for non-aging and aging specimens. As a result of R.T tensile test, non-aging specimens were fractured in base metal except for low heat input specimen and aging specimens were fractured in weld metal. Also high temperature tensile test were carried out by aging specimen. After high temperature tensile test, fracture of aged specimen was occurred in base metal except for low heat input specimen. Fracture surface of low heat input specimen in weld metal was confirmed as brittle fracture with observation using scanning electron microscope(SEM). Significant decrease in ultimate tensile strength (between 82 and 85%) was observed for aged ferritic stainless steels(STS 429) when tested at high temperature.

Tenderness Improvement and Utilization of Low Quality Meat by High Temperature Aging (고온숙성에 의한 저급육의 연도개선과 그 이용)

  • Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.549-555
    • /
    • 1989
  • The effect of high temperature aging on the meat tenderness improvement was studied, and also the effect of salt, pyrophosphate and succinic anhydride on binding characteristics of restructed beef were compared. At high temperature aging, shear force value decreased and myofibrillar fragmentation index increased as the aging progressed. From the electronic microscopic observation, the morphological change of myofibril appeared much faster when the meat was aged at high temperature. Added salt increased TBA values and rupture strength while reducing cooking loss. Increase in pyrophosphate decreased rooking loss and Increased rupture strength and TBA value. When salt and pyrophosphate were combined, the effects were somewhat additive. Added succinic anhydride increased cooking loss and hardness and decreased color rating, acceptability rating and adhesiveness, but cohessiveness was not significantly different from control group containing salt and pyrophosphate. The results suggest that high temperature aging have greater improving effect of meat tenderness of Korean native male cattle compared to low temperature aging and addition of succinic ahydride in combination with salt and pyrophosphate reduce binding ability of restructured beef.

  • PDF

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF

Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy (CuAINi 형상기억합금의 시효처리에 따른 상변태 거동)

  • Yang, G.S.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

Effect of Aging Treatment on the Tensile Properties of Mg-Nd-Y-Zr-Zn Casting Alloys (Mg-Nd-Y-Zr-Zn 주조합금의 인장특성에 미치는 시효처리의 영향)

  • Kim, Hyun-Sik;Ye, Dea-Hee;Kang, Min-Cheol;Kim, In-Bea
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.266-271
    • /
    • 2008
  • Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and $300^{\circ}C$ for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature ($150^{\circ}C$). Hardness and high-temperature ($150^{\circ}C$) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at $250^{\circ}C$ for 3 hours. The maximum tensile, yield strength and elongation at $150^{\circ}C$ were 237MPa, 145MPa and 13.6%, respectively, at $250^{\circ}C$ for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at $250^{\circ}C$ This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and $Mg_3Y_2Zn_3$.

Application of Electron-Beam Irradiation Combined with Aging for Improvement of Microbiological and Physicochemical Quality of Beef Loin

  • Yim, Dong-Gyun;Jo, Cheorun;Kim, Hyun Cheol;Seo, Kang Seok;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.36 no.2
    • /
    • pp.215-222
    • /
    • 2016
  • The combined effects of irradiation and aging temperature on the microbial and chemical quality of beef loin were investigated. The samples were vacuum-packaged, irradiated at 0 or 2 kGy using electron-beam (EB), and stored for 10 d at different aging temperatures (2, 14, or 25℃). The microbial growth, shear values, meat color, and nucleotide-related flavor compounds of the samples were analyzed. The irradiation effect on inactivation of foodborne pathogens was also investigated. The population of Listeria monocytogenes and Escherhia coli O157:H7 inoculated in beef samples decreased in proportion to the irradiation dose. Irradiation reduced the total aerobic bacteria (TAB) over the storage, but higher aging temperature increased the TBA. Thus TAB increased sharply in non-irradiated and high temperature-aged (14, 25℃) beef samples after 5 d. With increasing aging temperature and aging time, shear force values decreased. Lipid oxidation could be reduced by short aging time at low aging temperature. The color a* values of the irradiated beef were lower than those of the non-irradiated throughout the aging period. As aging period and temperature increased, IMP decreased and hypoxanthine increased. Considering microbial and physicochemical properties, irradiation can be used for raw beef to be aged at relatively high temperature to shorten aging time and cost.

A Comparison of the Failure Mechanism for High Power Converted White LEDs(3W) (고 출력 백색 변환용 LED(3W용)의 고장메커니즘 비교)

  • Yun, Yang-Gi;Jang, Jung-Sun
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • This paper presents a comparison of the failure mechanism for high power converted white LEDs(3W) with the commercially available YAG:Ce and silicate phosphor. We carry out the normal aging life test for 10,000 hours, the high temperature aging test for 8,000 hours, the high temperature and humidity aging test for 8,000 hours and the current aging testing for 5,000 hours. The optical and electrical parameters of LEDs were monitored, such as lumen, correlated color temperature (CCT), chromaticity coordinates(x, y), thermal resistance, I -V curve and spectrum intensity. The stress induced a luminous flux decay on LED in all experiments and causes a failure. So we try to find out what's a main failure mechanism for a high power LED.

Effect of Aging Treatment on Fracture Characteristics of High Strength Al-Alloy (고력 알루미늄 합금의 파괴특성에 관한 시효처리의 영향)

  • Moon, Chang-Kweon;Oh , Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.23-29
    • /
    • 1984
  • Nowdays, the high strength aluminum alloys are broadly used for structural purpose, but the practical strengthening method by aging treatment are not much available. So that, in this study, in order to investigate the effect of aging treatment for strengthening on the fracture characteristics of the domestic high strength Al alloy (A2024BE), the variations of the aging temperature and time were taken after solution treatment. By microstructural examination, and by SEM fractographs of the fractures, the effects of aging temperature and time were investigated, considering on the fracture behaviour. The results obtained are as follows: 1) It was confirmed by microstructural investigation that the aging temperature of $190^{\circ}C$ and the aging time of 12hours were optimal to get more sound microstructure with distribution of uniform precipitation. 2) By step aging treatment, the proper aging time for obtaining the similar microstructure without any microstructural defects could be shortened in half the normal aging time. 3)By examining the SEM fractographs of the fracture surface, it was found that, regardless of the aging treatment time and temperature, all were intergranular ductile fractures, but the aging treatment at $190^{\circ}C$ for 12 hours resulted in dimple-type-transgranular and intergranular-ductile-frature.

  • PDF

Accelerated Life Test for 1.25Gbps Transceiver (광통신용 1.25Gbps Transceiver 가속수명시험)

  • Yun, Gwang-Su;Yu, Chong-Hee;Heo, Young-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1391-1393
    • /
    • 2008
  • In this paper, the long-term reliability for 1.25G transceiver in use of high speed optical access network is investigated. High temperature storage tests and accelerated life tests are used to long-term reliability. Accelerated aging test have been during 3,000 hour of the three accelerated aging conditions by caused high temperature stress. Mean life is assumed to follow the Arrhenius relationship and analysis from the failure data obtained in the accelerated aging conditions.

  • PDF