• Title/Summary/Keyword: high strength pile

Search Result 117, Processing Time 0.034 seconds

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure (고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향)

  • Lee, Seung-Yong;Lee, Sang-Hyeok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.

Basic study of new concept environment-friendly pile foundations with earthquake resistant foundation and lateral reinforcement on rapid-transit railway bridge (고속철도교 기초 내진 및 수평저항성능 보강형 신개념 친환경말뚝 신공법의 실용화 기초연구)

  • SaGong, Myung;Paik, Kyu-Ho;Lim, Hae-Sik;Cho, Kook-Hwan;Na, Kyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.880-894
    • /
    • 2010
  • The Grout injected precast pile is widely used in rapid-transit railway bridge recently. The existing portland cement of well used filling at injected precast method that with low strength and environmental pollution, unstable in which ground water contamination by cement flow out, ground relaxation by water down, decrease of horizontality resistance and durability and load transfer divide etc. In particular, as in rapid-transit railway bridge need to secure safety from different angle with vibration of high speed train, horizontal force when train stop and earthquake. Works of foundation construction consider to requirements of the times to coal yard green growth. Together, new green foundation method for possible economics and securing of reduce the term of works are material to developments. Therefore, we carried out study that it is using and development new concept environment - friendly filling include durability and earthquake resistance, for secure safety and minimize environment pollution. To achieve this, we carried out difference tests that new green fillings of underwater concrete, high liquidity, high viscosity, early stiffness as compared to existing portland cement fillings. As results, new green filling have outstanding application at precast pile method and micropile construction method with vertical bearing capacity, horizontal bearing capacity and many case. From now on we will be looking forward to development of new environment-friendly foundation method from various further studies.

  • PDF

Back-Calculated P-y curves from Lateral Load Tests for Railway Bridge Foundation (수평재하시험을 이용한 철도교 기초의 P-y 곡선에 관한 연구)

  • Kim, Jong-Chil;SaKong, Myung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.821-828
    • /
    • 2011
  • A significantly larger lateral load and moment are applied on a high speed railway bridge foundation than other bridge foundations. Therefore most of bridge foundations on Honam high speed railway project were designed by high strength steel pipe piles to resist lateral load and moment, which caused the increase of construction costs. In order to perform optimum design, it is important to estimate accurate lateral resistance when designing this type of structure. Lateral load tests were carried out based on the field design data with the purpose of examining the lateral behavioral characteristics of a railway bridge foundation. The standard load test method(ASTM D 3966) was used for field tests by applying twice of design load. Total four load tests were performed on high speed railway bridge foundations with strain gages installed by every 1m along piles to measure load-resistance characteristics under applied lateral loads. The back-calculated P-y curves from strain gages were compared with estimated P-y curves using theoretical methods based on geotechnical investment data. Back-calculated P-y curves from field tests for sand and clay ground conditions were presented in this paper, which are different from theoretical P-y curves. By using the research results of this study, more accurate estimations of pile design under lateral loads can be available for similar geotechnical conditions.

  • PDF

Dynamic Precipitation and Substructure Stablility of Cu Alloy during High Temperature Deformation

  • Han, Chang-Suk;Choi, Dong-Nyeok;Jin, Sung-Yooun
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.343-348
    • /
    • 2019
  • Structural and mechanical effects of the dynamical precipitation in two copper-base alloys have been investigated over a wide range of deformation temperatures. Basing upon the information gained during the experiment, also some general conclusion may be formulated. A one concerns the nature of dynamic precipitation(DP). Under this term it is commonly understood decomposition of a supersaturated solid solution during plastic straining. The process may, however, proceed in two different ways. It may be a homogeneous one from the point of view of distribution and morphological aspect of particles or it may lead to substantial difference in shape, size and particles distribution. The effect is controlled by the mode of deformation. Hence it seems to be reasonable to distinguish DP during homogeneous deformation from that which takes place in heterogeneously deformed alloy. In the first case the process can be analyzed solely in terms of particle-dislocation-particle interrelation. Much more complex problem we are facing in heterogeneously deforming alloy. Deformation bands and specific arrangement of dislocations in form of pile-ups at grain boundaries generate additional driving force and additional nucleation sites for precipitation. Along with heterogeneous precipitation, there is a homogeneous precipitation in areas between bands of coarse slip which also deform but at much smaller rate. This form of decomposition is responsible for a specially high hardening rate during high temperature straining and for thermally stable product of the decomposition of alloy.

Effect of Molybdenum Addition and Specimen Orientation on Microstructure and Mechanical Properties of API X70 Linepipe Steels (Mo 첨가 및 시편 방향에 따른 API X70 라인파이프강의 미세조직과 기계적 특성)

  • Dong-Kyu Oh;Seung-Hyeok Shin;Byoungchul Hwang
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.251-256
    • /
    • 2023
  • This study aims to examine the correlation between microstructures and the mechanical properties of two high-strength API X70 linepipe steels with different specimen directions and Moaddition. The microstructure of the Mo-added steel has an irregularly shaped AF, GB matrix with pearlite because of the relatively large deformation in the non-recrystallization temperature region, while that of the Mo-free steel shows a PF matrix with bainitic microstructure. In the Mo-added steel, the M/A (martensite-austenite) in granular bainite (GB) and pearlite act as crack initiation sites with decreased upper shelf energy and an increased ductile to brittle transition temperature (DBTT). Regardless of Mo addition, all of the steels demonstrate higher strength and lower elongation in the T direction than in the L direction because of the short dislocation glide path and ease of pile-up at grain boundaries. In addition, the impact test specimens with T-L direction had a lower impact absorbed energy and higher DBTT than those with the L-T direction because the former exhibit shorter unit crack path compared to the latter.

A Study on Design Optimization of Mooring Pier using Prestressed Precast Concrete Panel (프리스트레스트 프리캐스트 콘크리트 패널을 이용한 잔교식부두의 최적설계)

  • 조병완;태기호;김용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.253-258
    • /
    • 2000
  • Recently, the area of design optimization, especially structural optimization, has been and to be a continuous active area of research. And the design optimizations of port facilities have been achieved by many other civil engineers. But the design optimization of port facilities were limited to the design optimization of the breasting dolphin. This paper invested the design optimization of mooring pier and the foundations of mooring pier was suggested considering the convenience of repair and reinforcement work. The mooring pier devised with prestressed precast concrete panel and rigid frame welded wide flange beam to steel pipe pile. To accomplish the design optimization of mooring pier, the Augmented Lagrangian Multiplier Method(ALM) of ADS(Garret N. Vanderplaats) optimization routine, BFGS method as optimizer and Golden Section Method as one dimensional search were utilized. As a result, thirty percent of material cost for construction was reduced by design optimization. The tensile stress of concrete panel and bottom flage was critical constraints under service load. So, using high strength concrete and steel will be economical. And lots of initial values must be invested to accomplish the design optimization in design procedures.

  • PDF

Response of H-Pile under Lateral Load in Cohesionless Soils (사질토 지반에서 고강도 H-형강 말뚝의 수평거동)

  • 박영호;정현식;이영생;정종홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.237-244
    • /
    • 2000
  • Piles are often subjected to both axial and lateral loads. The nonlinear subgrade reaction method is widely used for the design of laterally loaded piles and in this approach the soil reaction is replaced with a series of independent nonlinear Winkler springs. In this study, Laterally loaded high strength H-piles were analyzed using a finite difference solution, and three p-y curve models with different k values(the coefficient of horizontal subgrade reaction, [FL$\^$-3/]) were evaluated using data obtained from various field tests, and another analysis method using Q$\sub$g/ - y$\sub$g/ curve was developed. The results of this analysis were compared with the measured values to assess their applicability.

  • PDF

Experimental Analysis of Large Size Concrete-Filled Glass Fiber Reinforced Composite Piles Subjected to the Flexural Compression (대구경 콘크리트 충전 복합소재 파일의 휨-압축 거동에 대한 실험적 분석)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.519-529
    • /
    • 2009
  • Fiber reinforced composite materials have various advantages in mechanical and chemical aspects. Not only high fatigue and chemical resistance, but also high specific strength and stiffness are attained, and therefore, damping characteristics are beneficial to marine piles. Since piles used for marine structures are subjected to compression and bending as well, detailed research is necessary. Current study examine the mechanical behavior under flexural and/or compressive loads using concrete filled fiber reinforced plastic composite piles, which include large size diameter. 25 pile specimens which have various size of diameters and lengths were fabricated using hand lay-up or filament winding method to see the effect of fabrication method. The inner diameters of test specimens ranged from 165 mm to 600 mm, and the lengths of test specimens ranged from 1,350 mm to 8,000 mm. The strengths of the fill-in concrete were 27 and 40 MPa. Fiber volumes used in circumferential and axial directions are varied in order to see the difference. For some tubes, spiral inner grooves were fabricated to reduce shear deformation between concrete and tube. It was observed that the piles made using filament winding method showed higher flexural stiffness than those made using hand lay-up. The flexural stiffness of piles decreases from the early loading stage, and this phenomenon does not disappear even when the inner spiral grooves were introduced. It means that the relative shear deformation between the concrete and tube wasn't able to be removed.

Numerical Analysis of the Stability of a High-Strength Joint Buried Pile Retaining Wall Method (수치해석을 이용한 고강도 결합 매입말뚝 흙막이 공법의 안정성 검토에 관한 연구)

  • Hyeok Seo;Yeongpan Ha;Junyoung Choi;Kyungho Park;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.249-262
    • /
    • 2024
  • Retaining walls are widely used in the construction of underground structures. This study reviews the stability of the high-strength joint buried pile method at a site in Korea. [Consider giving details of the location.] The method is assessed by considering the amount of ground settlement, as calculated by finite element analysis and measured at the site. Comparison of the measured and numerical results confirmed the method's stability and field applicability. Settlement of 13.42~13.65 mm was calculated for seven cross-sections [The Abstract should be comprehensible without reference to the main text. The labels A-A' to G-G' should not be introduced here without explanation.] using numerical analysis, and the measured settlement reached a maximum of 2.00 mm. The observed differences and variations [Please state what differed/varied.] did not exceed the design expectations in any section. Instruments installed at the back of the excavation area were used to assess the conditions. An underground gradient meter recorded a cumulative horizontal displacement of between -0.40 and 0.60 mm, and an underground water meter recorded slight displacements of between -0.21 and 0.28 m compared with the initial measurements. A surface settlement meter observed very little movement, with a maximum of -2.00 mm compared with the initial measurement, thereby confirming the establishment of a stable state within the management criteria.