• 제목/요약/키워드: high strength concrete column

검색결과 448건 처리시간 0.023초

중심축력을 받는 콘크리트 충전강관 기둥의 역학적 거동 특성에 관한 연구 (A Study on the Mechanical Properties of Concrete Filled Steel Tube Column under Centric Axial Load)

  • 박정민;김화중
    • 콘크리트학회지
    • /
    • 제7권5호
    • /
    • pp.133-144
    • /
    • 1995
  • 본 연구는 콘크리트 충전강관을 고층 건물의 구조부재로 이용하기 위한 연구의 일환으로서 강관의 폭두께비, 세장비와 충전콘크리트의 강도를 주요 변수로 하여 강관이 콘크리트를 단순 구속하는 경우의 재하조건으로서 일련의 실험을 콘크리트 충전강관 기둥의 역학적인 거동 특성을 고찰하였다. 얻어진 결론을 요약하면 다음과 같다. (1)구속 콘크리트의 파괴양상은 단주의 경우 시험체 단부에서의 압괴에 의한 $45^{\circ}$정도의 사인장 파괴가 이루어졌으며 장주의 경우 횡방향 휨 파괴 양상을 나타내었다. (2)원형강관으로서 콘크리트를 구속함으로서 변형능력의 향상과 동시에 콘크리트의 연성 효과를 증대시킬 수 있었다. (3)강관의 세장비, 폭두께비, 콘크리트의 강도를 고려하여 콘크리트의 구속계수를 이용하여 강관에 의해 구속된 내부 콘크리트와 충전 강관 기둥의 최대내력 산정식을 제안하였다.

Experimental investigation of local damage in high strength concrete columns using a shaking table

  • Bairrao, Rogerio;Kacianauskas, Rimantas;Kliukas, Romualdas
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.581-602
    • /
    • 2005
  • In this paper the accumulation of local damage during the cyclic loading in reinforced high-strength concrete columns is experimentally investigated. Two identical column specimens with annular cross-section and spiral reinforcement were designed and two tests, up to failure, under the action of a constant vertical concentrated force and a time-dependent concentrated horizontal force, were carried out at the LNEC shaking tables facility. Sine type signals, controlled in amplitude, frequency and time duration were used for these experiments. The concept of local damage based on local stiffness degradation is considered in detail and illustrated by experimental results. The specimens were designed and reinforced in such a way that the accumulation of damage was predicted by dominating deformations (cracking and crushing of the concrete) while the increasing of the loading values was a dominating factor of damage. It was observed that the local damage of HSC columns has exposed their anisotropic local behaviour. The damage accumulation was slightly different from the expected in accordance with the continuum damage concept, and a partial random character was observed.

중심 축력을 받는 고강도 철근 콘크리트 기둥의 내력 및 연성에 관한 연구 (Strength and Ductility of High-Strength Reinforced Concrete Columns under Uniaxial Loads)

  • 이강건;이재연;김성수;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.57-62
    • /
    • 1990
  • This paper is to study the effect of rectilinear confinement in high-strength concrete subjected to a monotonically increasing compressive axial loads. To investigate behavior of columns rectilinearly confined with lateral ties and longitudinal rebars, twelve specimens including two plain concrete specimens were tested. The main variables in this study are volumetric ratio of lateral ties, cistribution of lateral ties, yield strength of logitudinal steel, ratio of area of longitudinal steel to the area of cross section. The test results were not only compared with an empirical model for the stress-strain curve of rectilinearly confined high-strength concrete but also the existing model. The empirical model used calculating column capacity shows better agreement with the test results tham the existing model.

  • PDF

CFT구조 적용을 위한 고강도 콘크리트(80이상)의 기초물성 연구 (An Experimental Study on the Characterisitics of High Strength Concrete(over the 80Mpa) for adapt to CFT)

  • 이장환;강용학;공민호;정근호;김진호;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.561-564
    • /
    • 2003
  • One of the most important reasons that CFT is used in many conditions is by using that we can achieve the effect, which reduce the section of the member. This research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement when the high strength of concrete which is over 80㎫ is used in the CFT column.

  • PDF

Development and Application of CFT without Fire Protection using High Performance Steel and Concrete

  • Hong, Seok-Beom;Kim, Woo-Jae;Park, Hee-Gon
    • 한국건축시공학회지
    • /
    • 제13권3호
    • /
    • pp.272-281
    • /
    • 2013
  • Concrete filled tube (CFT) columns, which consist of a steel tube filled with concrete, combine the benefits of the two materials. The steel tube provides a confining pressure to the concrete, while the local buckling of steel plate can be prevented by the concrete core. CFT columns also have a high fire resistance due to the heat storage effect of concrete under fire. For this reason, it is possible to develop CFT columns without fire protection measures. CFT columns without fire protection have many advantages, including quality control, cost reduction, better space efficiency and a shorter construction period. Due to these advantages, studies on the development of CFT columns without fire protection measures have been performed. However, CFT columns lose their bearing capacity under fire because the steel tube is exposed to the outside. As a result, the structure is collapsed, causing significant damage. In this research, we made a CFT column using high strength concrete (100 MPa) and high strength steel (800 MPa). We use steel fiber and nylon fiber with concrete to provide fire resistance. We perform the fresh concrete experiment and investigate the fire resistance of the CFT column (${\Box}400{\times}400{\times}15{\times}3000mm$) under loading. To investigate the effect of steel fiber on increasing fire resistance, we compare the fire resistance time according to the steel fiber. Through the test, it was found that the CFT specimen with steel fiber had better fire resistance performance than other cases.

Experimental study on concrete filled square hollow sections

  • Lam, Dennis;Williams, Christopher A.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.95-112
    • /
    • 2004
  • A series of tests was performed to consider the behaviour of short composite columns under axial compressive loading, covering a range of S275 and S355 grade steel square hollow section filled with normal and high strength concrete. The interaction between the steel and the concrete component is considered and the results show that concrete shrinkage has an effect on the axial strength of the column. Comparisons between Eurocode 4, ACI-318 and the Australian Standards with the findings of this research were made. Result showed the equation used by the ACI-318 and the proposed Australian Standards gave better predication for the axial capacity of concrete filled SHS columns than the Eurocode 4.

Experimental and numerical investigation on exposed RCFST column-base Joint

  • Ben, Mou;Xingchen, Yan;Qiyun, Qiao;Wanqiu, Zhou
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.749-766
    • /
    • 2022
  • This paper investigates the seismic performance of exposed RCFST column-base joints, in which the high-strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens with different axial force ratios (n = 0, 0.25, and 0.5) were tested under cyclic loadings. Finite element analysis (FEA) models were validated in the basic indexes and failure mode. The hysteresis behavior of the exposed RCFST column-base joints was studied by the parametrical analysis including six parameters: width of column (D), width-thickness ratio (D/t), axial force ratio (n), shear-span ratio (L/D), steel tube strength (fy) and concrete strength (fc). The bending moment of the exposed RCFST column-base joint increased with D, fy and fc. But the D/t and L/D play a little effect on the bending capacity of the new column-base joint. Finally, the calculation formula is proposed to assess the bending moment capacities, and the accuracy and stability of the formula are verified.

보-기둥 접합부의 전단거동에 대한 슬래브 및 횡구속 영향 (Transverse Concinement and Slab Effect on Shear Behavior of Beam-Column Connection)

  • 장극관;서대원;방세용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.419-422
    • /
    • 1999
  • This study was intended to investigate the cyclic behavior of high strength concrete beam-column connection. Four assemblies were designed 2/3 scale beam-column-slab joint and tested. The obtained results are follows. 1) The transverse beams increase the shear resistance and ductility of joint, 2) The slab was contributed to increase of the flexural capacity of the beam, but was not contributed to increase the joint ductility under lateral loads.

  • PDF

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.