• Title/Summary/Keyword: high strength concrete column

Search Result 449, Processing Time 0.026 seconds

Stress Distribution in Construction Joint of Prestressed Concrete Bridge Members with Tendon Couplers (고강도 철근콘크리트 보-기둥 외부 접합부의 전단 거동에 관한 실험)

  • Park Ki-Choul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.535-542
    • /
    • 2005
  • Two series of experiments on the performance of beam-column joints in High-Strength Reinforced concrete frames were carried out. Main experimental parameters were : concrete strength, column axial load and amount of joint hoop reinforcement. Test result showed that the ultimate shear strength of exterior joints increased of column axial compressive force and the amount of the joint hoop reinforcements. Through the regression analysis on the 24data, the following equation is obtained $jv_u=(2.935{\times}10-3\;{\rho}jw{\cdot}fy\;+\;0.365){\sqrt{f_{ck}}}$

A new method for earthquake strengthening of old R/C structures without the use of conventional reinforcement

  • Tsonos, Alexander-Dimitrios G.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.391-403
    • /
    • 2014
  • In this study an innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets (i.e., longitudinal reinforcement, stirrups, hoops). The proposed in this study innovative steel fiber high-strength or ultra high-strength concrete jackets were proved to be much more effective than the reinforced concrete jackets and the FRP-jackets when used for the earthquake-resistant strengthening of reinforced concrete structural members.

Analysis on the Behavior of Modified DDC, Precast Beam-Column Concrete Connectors for Apartments (공동주택을 위한 건식 프리캐스트 보-기둥 변형 DDC 접합부의 거동분석)

  • Song, Hyung-Soo;Lee, Bo-Kyung;Yu, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.9-12
    • /
    • 2005
  • Four precast concrete beam-column connectors for the apartment buildings were considered to develop a modified model which was adapt to domestic construction conditions from the DDC(Dywidag Ductile Connectors) of Germany. Special H-shape steel were used to decrease the width of column and beams for the construction of external frames of apartments. It was found that the DDC had high joint strength and ductility, however failed in x-shape crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting were compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

  • PDF

Analysis on the Behavior of Post-tensioned Precast Beam-Column Concrete Connectors (포스트텐션 프리캐스트 보-기둥 건식 콘크리트 접합부의 거동분석)

  • Song Hyung Soo;Ryu Jung Wook;Kim Yun Soo;Yu Sung Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.41-44
    • /
    • 2005
  • Three precast concrete beam-column connectors for the high-rise office buildings were considered to investigate the prestressing effects of the DDC(Dywidag Ductile Connectors) of Germany and of the modified DDC. The specimens of DDC, DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical x-shape crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

  • PDF

Study on strength of reinforced concrete filled circular steel tubular columns

  • Hua, Wei;Wang, Hai-Jun;Hasegawa, Akira;Shioi, Yukitake;Iwasaki, Shoji;Miyamoto, Yutaka
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.653-677
    • /
    • 2005
  • Concrete filled steel tubular columns (CFT) are widely used in civil engineering works, especially in large scale of works because of high strength, deformation, toughness and so on. On the other hand, as a kind of strengthening measure for seriously damaged reinforced concrete piers of viaduct in Hansin-Awaji earthquake of Japan in 1995, reinforced concrete piers were wrapped with steel plate. Then, a new kind of structure appeared, that is, reinforced concrete filled steel tubular column (RCFT). In this paper, compression test and bending-shearing test on RCFT are carried out. The main parameters of experiments are (1) strength of concrete, (2) steel tube with or without rib, (3) width-thickness ratio and (4) arrangement of reinforcing bars. According to the experimental results, the effect of parameters on mechanical characteristics of RCFT is analyzed clearly. At the same time, strength evaluation formula for RCFT column is proposed and tested by experimental results and existed recommendations (AIJ 1997). The strength calculated by the proposal formula is in good agreement with test result. As a result, the proposed evaluation formula can evaluate the strength of RCFT column properly.

An Experimental Study of Square High Strength Concrete Column Sections under Axial Compression and Biaxial Bending (축력과 이축휨을 받는 정사각형 단면의 고강도 콘크리트 기둥에 대한 실험적 연구)

  • 조문희;이종원;한경돈;유석형;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.35-40
    • /
    • 2001
  • The exact solution of strength of reinforced concrete RC columns subjected to axial compression combined with biaxial bending needs trial and adjustment procedure to find the depth and inclination of the neutral axis. Thus, approximate methods of analysis and design for biaxial bending are used in practice. Load contour interprets the relation of biaxial bending and equivalent uniaxial bending by u factor which is related to material properties and column shapes. The purpose of this study is to investigate the behavior of high strength RC columns subjected to the combined axial compression and biaxial bending. Fifteen test specimens with dimensions of 200mm$\times$200mm and 4-Dl3 longitudinal steel were examined. The variable of the test is compressive strength of concrete (350, 585, 650kgf/$cm^{2}$), compression load ratio (0.2$P_{o}}$, 0.35$P_{o}}$, 0.5$P_{o}}$), and inclination of loading ($\theta$=0, 22.5, $45^{\circ}$). Test results of coefficient $\alpha$ depending on the compressive strength of concrete are compared with ACI code.

  • PDF

Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets

  • Wu, Han-Liang;Wang, Yuan-Feng
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.501-516
    • /
    • 2010
  • This paper is aiming to study the performances of reinforced high-strength concrete (HSC) short columns confined with aramid fibre-reinforced polymer (AFRP) sheets. An experimental program, which involved 45 confined columns and nine unconfined columns, was carried out in this study. All the columns were circular in cross section and tested under axial compressive load. The considered parameters included the concrete strength, amount of AFRP layers, and ratio of hoop reinforcements. Based on the experimental results, a prediction model for the axial stress-strain curves of the confined columns was proposed. It was observed from the experiment that there was a great increment in the compressive strength of the columns when the amount of AFRP layers increases, similar as the ultimate strain. However, these increments were reduced as the concrete strength increasing. Comparisons with other existing prediction models present that the proposed model can provide more accurate predictions.

Compressive and flexural behaviors of ultra-high strength concrete encased steel members

  • Du, Yong;Xiong, Ming-Xiang;Zhu, Jian;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.849-864
    • /
    • 2019
  • One way to achieve sustainable construction is to reduce concrete consumption by use of more sustainable and higher strength concrete. Modern building codes do not cover the use of ultra-high strength concrete (UHSC) in the design of composite structures. Against such background, this paper investigates experimentally the mechanical properties of steel fibre-reinforced UHSC and then the structural behaviors of UHSC encased steel (CES) members under both concentric and eccentric compressions as well as pure bending. The effects of steel-fibre dosage and spacing of stirrups were studied, and the applicability of Eurocode 4 design approach was checked. The test results revealed that the strength of steel stirrups could not be fully utilized to provide confinement to the UHSC. The bond strength between UHSC and steel section was improved by adding the steel fibres into the UHSC. Reducing the spacing of stirrups or increasing the dosage of steel fibres was beneficial to prevent premature spalling of the concrete cover thus mobilize the steel section strength to achieve higher compressive capacity. Closer spacing of stirrups and adding 0.5% steel fibres in UHSC enhanced the post-peak ductility of CES columns. It is concluded that the code-specified reduction factors applied to the concrete strength and moment resistance can account for the loss of load capacity due to the premature spalling of concrete cover and partial yielding of the encased steel section.

Properties of the Spalling and Fire Resistance on the High Strength RC Column attached with the Stone Panel Using Lightweight Foamed Concrete (경량기포 콘크리트를 이용한 석재패널 부착 고강도 RC 기둥의 내화 및 폭렬특성)

  • Lee, Dong-Gyu;Beak, Dea-Hyun;Kim, Won-Ki;Jo, Yong-Beak;Han, Min-Choel;Han, Choen-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.19-22
    • /
    • 2007
  • This study discussed the prevention of the spalling and improvement of the fire resistance performance how to fill up lightweight foamed concrete on high strength RC column attached with the stone panel. The destructive spalling extremely occur caused by sudden high temperature and increased vapor pressure corresponding to falling the ston panel at all RC column, and the steel bar is exposed. The stone panel fall off about 30 minutes and spalling occur about 70 minutes on Plan RC column, fire endurance paint, and fire endurance mortar, so it can be confirmed that fire endurance paint and mortar, which is used as fire endurance material, are not effective. In the other side, it can be protected from fire about $120{\sim}140$ minutes when the lightweight foamed concrete is used as fire endurance material. For the weight loss after the fire test, plain is 33, fire endurance paint is 37%, and fire endurance mortar s 40.7%. And W/B 60%-3 is 53.4%, 60%-1.5 is 40.1%,65%-3 is 39.4%, and 65%-1.5% is 47.1. Overall, the weight loss of the plain is lower than that of the lightweight foamed concrete.

  • PDF

Behavior of High-Strength Concrete Columns by Longitudinal Reinforcement Ratio and Eccentric Distance (주근비와 편심거리에 따른 고강도 콘크리트 기둥의 거동)

  • 김재한;김경희;최명신;이광수;반병열;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.529-532
    • /
    • 1999
  • With increasing use of high-strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of the current design codes. This experimental study was conducted to investigate the behavior of eccentrically loaded high-strength concrete columns. Column specimens with concrete strength 234, 437, 703kgf/㎠ were tested under monotonically increasing eccentric compression. The test parameters included the longitudinal reinforcement ratio, eccentric distance and concrete compressive strength. The analytical results obtained from the stress-strain relationship and the ACI's equivalent rectangular stress block are compared with experimental test results.

  • PDF