• 제목/요약/키워드: high strength column

검색결과 609건 처리시간 0.028초

Outrigger Systems for Tall Buildings in Korea

  • Chung, Kwangryang;Sunu, Wonil
    • International Journal of High-Rise Buildings
    • /
    • 제4권3호
    • /
    • pp.209-217
    • /
    • 2015
  • Outrigger systems are highly efficient since they utilize the perimeter zone to resist lateral forces, similar to tubular systems. The entire structural weight can be reduced due to the system's significant lateral strength. Therefore, it is the most commonly selected structural system for tall and supertall buildings built in recent years. In this paper, issues regarding the differential shortening effect during construction of the outrigger system and the special joints used to solve these issues will be addressed. Additionally, the characteristics of wind and seismic loads in Korea will be briefly discussed. Lastly, buildings in Korea using an outrigger as their major structural system will be introduced and the structural role of the system will be analyzed.

Evaluation of Composite Ground Improvement at Structural Foundation Ground by Super Injection Grouing (SIG공법에 의한 구조물기초지반에서의 복합지반개량 평가)

  • 김종국;손형호;이호관;성기광
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.347-354
    • /
    • 2002
  • In this paper, when structures are constructed in the soft ground with poor bearing capacity at Incheon International Airport(railroad area), as for the grouting columns built In soft ground by high pressure jet grouting with Triple tube rod(super injection grouting), the effects on reinforcement and bearing capacity of ground are investigated. A unconfined compressive strength tests has been performed on the specimens sampled from the grouting columns and a mass plate bearing test has been performed on a grouting column. The test results show that super injection grouting has a sufficient effect on composite ground improved of foundation ground and reatraint of settlement of structure.

  • PDF

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구(II) -바벨형 단면(Barbell Shape)의 내력과 연성을 중심으로-)

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.68-73
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with barbell cross section under cyclic loads are discussed and evaluated. Four halr scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick and the section of all boundary column at both ends is 200 mm $\times$ 200mm. Main variables are : design concept, vertical flexural reinflrcement ratios and reinforcement details(including crossed diagonal shear reinforcement in SW7 specimen). In SW7 specimen, maximum strength and consequently dissipating energy index were 1.45 and 1.28 times greater than those of SW6 specimen, respectively.

  • PDF

Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions

  • Lemonis, Minas E.;Daramara, Angeliki G.;Georgiadou, Alexandra G.;Siorikis, Vassilis G.;Tsavdaridis, Konstantinos Daniel;Asteris, Panagiotis G.
    • Steel and Composite Structures
    • /
    • 제42권4호
    • /
    • pp.459-475
    • /
    • 2022
  • In this paper a model for the prediction of the ultimate axial compressive capacity of square and rectangular Concrete Filled Steel Tubes, based on an Artificial Neural Network modeling procedure is presented. The model is trained and tested using an experimental database, compiled for this reason from the literature that amounts to 1193 specimens, including long, thin-walled and high-strength ones. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against existing methodologies from design codes and from proposals in the literature, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the ultimate axial load.

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • 제24권6호
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제6권4호
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • Kang, Seong Chul;Lee, Byoung Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제26권5호
    • /
    • pp.713-721
    • /
    • 2012
  • In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required. Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of $400^{\circ}C$ which turned out to be the optimum temperature. Activated Ca-loess complex below $400^{\circ}C$ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above $400^{\circ}C$ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above $400^{\circ}C$20. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess. Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.

A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete (무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구)

  • Han, Myoung-Hwan;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권5호
    • /
    • pp.661-671
    • /
    • 2018
  • Domestic studies on steel plate concrete structures have focused on nuclear structures with high strength. In this study, the SC structure was applied to the general structure, and the SC structure that is advantageous in terms of safety and construction was limited to a special structure. As a basic study for applying SC, this paper proposes basic design information of a SC structure applying cement concrete to plan the structure, which is suitable for eco - friendliness by replacing concrete cement, an important factor in a SC structure, with blast furnace slag. This study examined the compression characteristics and the effective length factor under central compression load. To calculate the effective length factor, the Euler column theory was applied without applying plate theory. The effective length factor was calculated from the yield strength of the steel plate, buckling of the steel plate, and the point at which the concrete was broken. In addition, this study examined whether the maximum compressive strength meets the national and international reference equations with the slenderness ratio (B/t) as a parameter. By analyzing the buckling of the specimen by applying the column theory and selecting the strain of the measured steel plate, the effective length factor was analyzed and compared with the value presented in the reference equation.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns with Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • 제21권4호
    • /
    • pp.473-480
    • /
    • 2009
  • The 180 minutes fire test based on the standard curve of ISO-834 were conducted on three RC column specimens with different constant axial loading ratios to evaluate the fire performance of fiber cocktail (polypropylene+steel fiber) reinforced high strength concrete column. The columns were tested under three loading levels as 40%, 50%, and 61% of the design load. No explosive spalling has been observed and the original color of specimen surface has been changed to light pinkish grey. The maximum axial displacements of three specimens were 1.5~2.2 mm. There was no reduction in load bearing capacity of each specimen exposed to fire and no effect were observed on the fire performance within 61% of the design load. The tendencies of the results with loading, such as the temperature distribution of in concrete and the changes in temperature rise due to the water vaporization in concrete, are very similar to those without loading. The final temperatures of steel rebar after 180 minutes of fire test resulted in 491.4${^{\circ}C}$ for corner rebar, 329.0${^{\circ}C}$ for center rebar, and 409.8${^{\circ}C}$ for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 153.7${^{\circ}C}$ㅍ. The tendency of temperature rise in concrete and steel rebar changed after 30~50 minutes from the starting time of the fire test because the heat energy influx into corner rebar is larger than that into center rebar. The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

A Study on the Characteristic of Iron Oxide Carrier for the Removal of Arsenic in Small Water Treatment Plant (소규모 정수처리시설 내 비소제거를 위한 산화철 담체 특성에 관한 연구)

  • You, Hee Gu;Lee, Ki Hee;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • 제31권2호
    • /
    • pp.209-215
    • /
    • 2015
  • The purpose of this study is to evaluate the characteristic of the iron oxide carrier for removing arsenic contained in the groundwater. 4 types of iron oxide carrier used in the study is iron oxide coated sand carrier (IOCSC), iron oxide coated zeolite carrier (IOCZC), iron oxide plasticity carrier (IOPC) and platinum iron oxide plasticity carrier (PIOPC). The results of this study, IOPC is showed high arsenic adsorption strength and the maximum amount of adsorption than the IOCC. Based on the results of the arsenic adsorption characteristic, by using IOCC was conducted to column test. As a result, PIOPC is showed a high arsenic adsorption amount than IOPC, it was found that the time required to reach the breakthrough point is also extended. Therefore it is determined that stably compliance with water quality standards enhanced drinking water when using the PIOPC.