• Title/Summary/Keyword: high strain rate testing

Search Result 55, Processing Time 0.025 seconds

Stress analysis of mandibular implant overdenture with locator and bar/clip attachment: Comparative study with differences in the denture base length

  • Yoo, Jin Suk;Kwon, Kung-Rock;Noh, Kwantae;Lee, Hyeonjong;Paek, Janghyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.143-151
    • /
    • 2017
  • PURPOSE. The design of the attachment must provide an optimum stress distribution around the implant. In this study, for implant overdentures with a bar/clip attachment or a locator attachment, the stress transmitted to the implant in accordance with the change in the denture base length and the vertical pressure was measured and analyzed. MATERIALS AND METHODS. Test model was created with epoxy resin. The strain gauges made a tight contact with implant surfaces. A universal testing machine was used to exert a vertical pressure on the mandibular implant overdenture and the strain rate of the implants was measured. RESULTS. Means and standard deviations of the maximum micro-deformation rates were determined. 1) Locator attachment: The implants on the working side generally showed higher strain than those on the non-working side. Tensile force was observed on the mesial surface of the implant on the working side, and the compressive force was applied to the buccal surface and on the surfaces of the implant on the non-working side. 2) Bar/clip attachment: The implants on the both non-working and working sides showed high strain; all surfaces except the mesial surface of the implant on the non-working side showed a compressive force. CONCLUSION. To minimize the strain on implants in mandibular implant overdentures, the attachment of the implant should be carefully selected and the denture base should be extended as much as possible.

A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature (투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구)

  • Lee, Ho Jin;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

A study on the blood collecting device of main shaft injection molding for measuring blood glucose by CAE analysis (혈당 측정을 위한 채혈기구 메인 샤프트의 사출성형 시뮬레이션 및 시 사출에 관한 연구)

  • Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In diabetics, daily blood glucose testing is generally required at home, and thus, performing blood collection several times a day using a blood line is essential. Blood collection in the home and in the hospital is a source of pain and is the second most common cause of infection. In blood collecting device generally consists of four major parts: inner-case, outer case, main shaft and triger, and the most import part among those for necessary functionality is the main shaft. Filling time and injection pressure, filling balance, strain-rate analysis of change based on availability of the product. The Moldflow of FEM simulation is used for the analysis of injection molding process. In this study, aims to create a technique for injection molding and manufacturing of a main shaft of a high-performance blood-collecting apparatus capable of automatically extracting a lancet to relieve pain through depth control of the lancet.

Evaluation of the Asph81t Mixture Performance with Waste Materials

  • Lee, Kwan-Ho;Lovell, C
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-34
    • /
    • 1996
  • The objective of this paper is to evaluate the asphalt mixture performance with pyrolyzed carbon black(CBP) and air -cooled iron blast furnace slag. Marshall mix design was performed to determine the optimum binder content, The optimum binder content ranged from 6.3 percent to 7.75 percent. Dynamic creep testing was carried out using mixtures at the optimum binder content. Based on the test results, the use of pyrolyzed carbon black and slag in the asphalt pavement showed a positive result, such as the increase of Marshall stability, the decrease of the strain rate and the decrease in the mix stiffness rate at high temperature(5$0^{\circ}C$) and 137.9 kPa confinement. Within the limits of this research. it was concluded that pyrolyzed carbon black as an additive and slag as a coarse aggregate could be used to produce an asphalt paving mixture that has good stability, stiffness, and rutting resistance.

  • PDF

A Study on Development of Model Materials Showing Similar Flow Characteristics of Hot Mild Steel at Various Temperatures (고온 연강 유동특성을 상사하는 모델재료 개발에 관한 연구)

  • 이종헌;김영호;배원병;이원화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1161-1171
    • /
    • 1993
  • Model materials are developed to achieve similarity of flow patterns for mild steels in forming processes at high temperatures. The model materials consist of pure plasticine and one or two additives such as resin and lanolin. To verify the similarity of flow patterns between physical modeling and compression of mild steels at high temperatures, ring and compression tests have been carried out with the developed-model materials at various strain rates, temperatures and lubricants. The test results are in good agreement with the flow patterns obtained from upsetting of a mild steel at high temperatures.

Comparative Study on Surrogate Modeling Methods for Rapid Electromagnetic Forming Analysis

  • Lee, Seungmin;Kang, Beom-Soo;Lee, Kyunghoon
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Electromagnetic forming is a type of high-speed forming process to deform a workpiece through a Lorentz force. As the high strain rate in an electromagnetic-forming simulation causes infeasibility in determining constitutive parameters, we employed inverse parameter estimation in the previous study. However, the inverse parameter estimation process required us to spend considerable time, which leads to an increase in computational cost. To overcome the computational obstacle, in this research, we applied two types of surrogate modeling methods and compared them to each other to evaluate which model is best for the electromagnetic-forming simulation. We exploited an artificial neural network and we reduced-order modeling methods. During the construction of a reduced-order model, we extracted orthogonal bases with proper orthogonal decomposition and predicted basis coefficients by utilizing an artificial neural network. After the construction of the surrogate models, we verified the artificial neural network and reduced-order models through training and testing samples. As a result, we determined the artificial neural network model is slightly more accurate than the reduced-order model. However, the construction of the artificial neural network model requires a considerably larger amount of time than that of the reduced-order model. Thus, a reduced order modeling method is more efficient than an artificial neural network for estimating the electromagnetic forming and for the rapid approximation of structural simulations which needs repetitive runs.

Effect of Interaction between Nutritional Level and Breed on Performance of Broiler Production (BROILER 사료의 영양수준이 육용계종의 산육능력에 미치는 영향)

  • 오봉국;오세정
    • Korean Journal of Poultry Science
    • /
    • v.6 no.1
    • /
    • pp.12-23
    • /
    • 1979
  • This experiment was carrid out to investigate the interaction between boilelr strains and nutrition levels, and the performances of four broiler strains such as Han Hyup 603, Hubbard, Anak and Filch when they were fed by four different nutrition levels (High Protein and energy; HP. HE., Medium Protein and energy; MP. ME., Low Protein ana energy; LP. LE., and low protein and energy; LLP. LLE.). The data used in this study were obtained from a total of 1200 broiler type chicks in Poultry Testing Station, Korean Poultry Association from June 16, to August 11, 1978. Differences of all characters among four nutrition levels were significant except viability and carcass rate. HP. HE and MP. ME treatments showed nearly the same performances in body weight, feed efficiency and point, spread but they were significantly superior to those of LP. LE and LLP. LLE. There were not significant differences among four strains in feed efficiency and viability but other characters, body weight, point spread and carcass rate were observed that the performance of the best strain B was significantly superior to strain D but it was not recognized significance compared with strain A, C in tile result of statisticel analysis. In the interaction between strains and nutrition levels, body weight at high and levels showed significantly differences but at low and low nutrition levels were nearly same among four strains. Therefore this study demonstrated that comparision of body weights between strains should be performed at medium nutrition level or above. Also point spread calculated as index of body weight and feed efficiency was observed that strain B at low nutrition level is excellently higher than other strains and there were little differences at low nutrition level among all strains. It was found that ]it tie differences between performances of high arid medium levels seemed to be as the reason of high fat addition for energy source to high mutrition feed, and in general superior strain showed good performance at all the nutrition levels in$.$all characters but in body weight and point spread there were significantly different responses with different nutrition level, The most superior strain B among four strains earned the most profit per bird, Although performances of high and medium nutrition levels were nearly the same, medium nutrition level also showed the most profit because the feed cost of high nutrition level was higher than that of medium nutrition level.

  • PDF

The suggestion of Steel Plate-Concrete Composite Beam Shape with Bolts (볼트 체결형 강판-콘크리트 합성보의 형상 제안)

  • Cho, Tae-Gu;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.305-314
    • /
    • 2018
  • The steel-plate concrete composite beam is composed of a steel plate, concrete and a shear connector to combine the two inhomogeneous materials. In general, the steel plate is assembled by welding an existing composite beam. In this study, a new steel-plate concrete composite (SPCC) beam was developed to reduce the size of the shear connector and improve its workability. The SPCC beam was composed of folded steel plates and concrete, without any shear connector. The folded steel plate was assembled with high strength bolts instead of welding. To improve the workability in field construction, a hat-shaped cap was attached in the junction with the slab. Monotonic two-point load testing was conducted under displacement control mode. The flexural strength of the SPCC beam specimen was calculated to be 76% of that of the complete composite beam by using the plastic stress distribution method and strain compatibility method. The cap acted as the stud and accessory. The synthesis rate could be increased by controlling the gap of the cap, and the bending performance could be evaluated by using the strain fitting method considering the synthesis rate of the SPCC beam.

A monitoring for the establishment of microbial limit of herbal medicine(I) (한약재의 미생물허용한도 설정을 위한 모니터링(I))

  • Lee, Ju-Hyun;Jeon, Won-Kyung;Go, Byoung-Seob;Chun, Jin-Mi;Lee, A-Yeong;Kim, Ho-Gyoung
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2006
  • Objectives : This study has attempted to establish an organized system for the microbiological quality of raw materials which are important factors in preparing the standard for microbial limits. Methods : This study has first set up microbial contamination limit test. total aerobic microbial count and total fungi count, int accordance with testing method of the Korea Pharmacopeia 8th edition in order to establish an inspection standard for microbial contamination. Results : The microbial contamination of 18 items that are highly prone to contamination by three regions(Seoul, Daejeon, Gyeongsangbuk-do), As a result, Morus alba Linne and Rehmannia glutimosa Liboschitz var. purpurea Makino showed as high contaminated by WHO's Microbial Contamination Limit standard. In case of Yukjin medicine in the Theory of Herb Medicinal Properties, total bacterial contamination rate showed as 17.7%, total fungal contamination rate showed as 41.2% and total aerobic mircobial count and total fungi count on Ephedra sinica Stapf. Pinellia ternate Breitenbach, Evodia officinalis Dode showed as high measured. The microbial conatmination rate materials which make up Yukmijihwanghwan were mostly high therefore the total aerobic microbial count was measured as high in case of Yukmijihwanghwan, the characteristics about microbial contamination strain is to be researched. Conclusions : By combining the basic data and experimental results related to microbial contamination of herb medicine, the most ideal storage standards for herb medicine has been attempted to be presented.

  • PDF

Prevalence and Characteristics of Antimicrobial-Resistant Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus from Retail Meat in Korea

  • Kim, Yong Hoon;Kim, Han Sol;Kim, Seokhwan;Kim, Migyeong;Kwak, Hyo Sun
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.758-771
    • /
    • 2020
  • This study was to investigate the prevalence and characteristics of antimicrobial-resistant Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) from 4,264 retail meat samples including beef, pork, and chicken in Korea between 2013 and 2018. A broth microdilution antimicrobial susceptibility testing was performed for S. aureus. Molecular typing by multilocus sequence typing (MLST), spa typing, and pulsed-field gel electrophoresis (PFGE), was performed on mecA-positive S. aureus strain. S. aureus was isolated at a rate of 18.2% (777/4,264), of which MRSA comprised 0.7% (29 strains). MLST analysis showed that 11 out of the 29 MRSA isolates were predominantly sequence type (ST) 398 (37.9%). In addition, ST72, ST692, ST188, ST9, and ST630 were identified in the MRSA isolates. The spa typing results were classified into 11 types and showed a high correlation with MLST. The antimicrobial resistance assays revealed that MRSA showed 100% resistance to cefoxitin and penicillin. In addition, resistance to tetracycline (62.1%), clindamycin (55.2%), and erythromycin (55.2%) was relatively high; 27 of the 29 MRSA isolates exhibited multidrug resistance. PFGE analysis of the 18 strains excluding the 11 ST398 strains exhibited a maximum of 100% homology and a minimum of 64.0% homology. Among these, three pairs of isolates showed 100% homology in PFGE; these results were consistent with the MLST and spa typing results. Identification of MRSA at the final consumption stage has potential risks, suggesting that continuous monitoring of retail meat products is required.