• Title/Summary/Keyword: high strain rate testing

Search Result 56, Processing Time 0.022 seconds

Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content (구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성)

  • Song Jung-Han;Huh Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

Ductility Enhancement in Sn-40Bi-X Alloys by Minor Additions of Alloying Elements (합금원소 첨가에 의한 Sn-40Bi-X 합금의 연성 향상)

  • Kim, Ju-Hyung;Lee, Jong-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.211-220
    • /
    • 2011
  • To improve the low ductility and high strain-rate sensitivity in Sn-Bi based solder alloys, the influences of the minor additions of alloying elements (Ag, Mn, In) were investigated. The strain-stress curves of various Sn-40Bi(-X) alloys, including a pre-suggested Sn-40Bi-0.1Cu composition were measured using a tensile testing machine. As a result, the elongation and ultimate tensile strength (UTS) values were compared. The small addition (0.5 wt.%) of Ag significantly enhanced the ductility and high strain-rate sensitivity of the alloys at strain rates of $10^{-4}$ to $10^{-2}\;s^{-1}$ mainly due to the increase and refinement of eutectic lamellar structures. The microstructure change increased the area of grain boundaries, thus ameliorating the grain boundary sliding mode. It was also found that Mn is an effective element in enhancing the ductility, especially at the strain rates of $10^{-3}$ to $10^{-2}\;s^{-1}$ The enhancement is likely attributed to the fine and homogeneous microstructure in the alloys containing Mn.

Adaptation of impactor for the split Hopkinson pressure bar in characterizing concrete at medium strain rate

  • Zhao, Pengjun;Lok, Tat-Seng
    • Structural Engineering and Mechanics
    • /
    • v.19 no.6
    • /
    • pp.603-618
    • /
    • 2005
  • The split Hopkinson pressure bar (SHPB) technique is widely used to characterize the dynamic mechanical response of engineering materials at high strain rates. In this paper, attendant problems associated with testing 70 mm diameter concrete specimens are considered, analysed and resolved. An adaptation of a conventional solid circular striker bar, as a means of achieving reliable and repeatable SHPB tests, is then proposed. In the analysis, a pseudo one-dimensional model is used to analyse wave propagation in a non-uniform striker bar. The stress history of the incident wave is then obtained by using the finite difference method. Comparison was made between incident waves determined from the simplified model, finite element solution and experimental data. The results show that the simplified method is adequate for designing striker bar shapes to overcome difficulties commonly encountered in SHPB tests. Using two specifically designed striker bars, tests were conducted on 70 mm diameter steel fibre reinforced concrete specimens. The results are presented in the paper.

Mechanical Properties of B-Doped Ni3Al-Based Intermetallic Alloy

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.42-45
    • /
    • 2012
  • The mechanical behavior and microstructural evolution during high temperature tensile deformation of recrystallized Ni3Al polycrystals doped with boron were investigated as functions of initial grain size, tensile strain rate and temperature. In order to obtain more precise information on the deformation mechanism, tensile specimens were rapidly quenched immediately after deformation at a cooling rate of more than $2000Ks^{-1}$, and were then observed by transmission electron microscopy (TEM). Mechanical tests in the range of 923 K to 1012 K were carried out in a vacuum of less than $3{\times}10^{-4}$ Pa using an Instron-type machine with various but constant cross head speeds corresponding to the initial strain rates from $1.0{\times}10^{-4}$ to $3.1{\times}10^{-5}s^{-1}$. After heating to deformation temperature, the specimen was kept for more than 1.8 ks before testing. The following results were obtained: (1) Flow behavior was affected by initial strain size; with decreasing initial grain size, the level of a stress peak in the true stress-true strain curve decreased, the steady state region was enlarged and elongation increased. (2) On the basis of TEM observation of rapidly quenched specimens, it was confirmed that dynamic recrystallization certainly occurred on deformation of fine-grained ($3.3{\mu}m$) and intermediate-grained ($5.0{\mu}m$) specimens at an initial strain rate of $3.1{\times}10^{-5}s^{-1}$ and at 973 K. (3) There were some dislocation-free grains among the new recrystallized grains. The obtained results suggest that both dynamic recrystallization and grain boundary sliding are operative during high temperature deformation.

Viscoelastic Behavior of High Density Polyethylene Using High Tibial Osteotomy with Respect to the Strain Rate (근위경골절골술(HTO)용 X-밴드 플레이트에 적용되는 고밀도 폴리에틸렌(HDPE)의 변형률속도에 따른 점탄성거동)

  • Hwang, Jung-Hoon;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2012
  • The mechanical behavior of the polymeric material, HDPE depends on both time and temperature. The study of the tensile behavior at different strain rates is important in engineering design of the orthopedics device such as X-band plate. The mechanical properties and deformation mechanisms of HDPE are strongly dependent on the applied strain rate. Generally, the deformation behavior of HDPE based on the stress-strain curve is complex because of the highly inhomogeneous nature of plastic deformation, particularly that of necking. Therefore, we attempted to determine the mechanical behavior of HDPE in this study. Normally, tensile testing under various strain rates of the HDPE has been used to determine the mechanical behavior. We performed tensile tests at various strain rates (1 to 500 %/min) to analyze the viscoelastic behavior on increasing the strain rate. A tensile stress-strain curve was plotted from the data, and the point of transition was marked to calculate the transition stress, strain, and modulus.

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles (알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.

Study of dynamic mechanical behavior of aluminum 7075-T6 with respect to diameters and L/D ratios using Split Hopkinson Pressure Bar (SHPB)

  • Kim, Eunhye;Changani, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.857-869
    • /
    • 2015
  • The aluminum 7075-T6 is known as an alloy widely used in aircraft structural applications, which does not exhibit strain rate sensitivity during dynamic compressive tests. Despite mechanical importance of the material, there is not enough attention to determine appropriate sample dimensions such as a sample diameter relative to the device bar diameter and sample length to diameter (L/D) ratio for dynamic tests and how these two parameters can change mechanical behaviors of the sample under dynamic loading condition. In this study, various samples which have different diameters of 31.8, 25.4, 15.9, and 9.5 mm and sample L/D ratios of 2.0, 1.5, 1.0, 0.5, and 0.25 were tested using Split Hopkinson Pressure Bar (SHPB), as this testing device is proper to characterize mechanical behaviors of solid materials at high strain rates. The mechanical behavior of this alloy was examined under ${\sim}200-5,500s^{-1}$ dynamic strain rate. Aluminum samples of 2.0, 1.5 and 1.0 of L/D ratios were well fitted into the stress-strain curve, Madison and Green's diagram, regardless of the sample diameters. Also, the 0.5 and 0.25 L/D ratio samples having the diameter of 31.8 and 25.4 mm followed the stress-strain curve. As results, larger samples (31.8 and 25.4 mm) in diameters followed the stress-strain curve regardless of the L/D ratios, whereas the 0.5 and 0.25 L/D ratios of small diameter sample (15.9 and 9.5 mm) did not follow the stress-strain diagram but significantly deviate from the diagram. Our results indicate that the L/D ratio is important determinant in stress-strain responses under the SHPB test when the sample diameter is small relative to the test bar diameter (31.8 mm), but when sample diameter is close to the bar diameter, L/D ratio does not significantly affect the stress-strain responses. This suggests that the areal mismatch (non-contact area of the testing bar) between the sample and the bar can misrepresent mechanical behaviors of the aluminum 7075-T6 at the dynamic loading condition.

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.