Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.3.199

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles  

Oh, Chang-Sup (Korea Institute of Science and Technology Information, Reseat Program)
Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.23, no.3, 2013 , pp. 199-205 More about this Journal
Abstract
The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.
Keywords
mechanical properties; aluminum-matrix composites; yield stress; temperature dependence; strain hardening rate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Dutta, S. M. Allen, and J. L. Hafley, Metall. Trans. A, 22A, 2553 (1991).
2 L. F. Mondolfo, Mater. Sci. Tech., 5, 118 (1989).   DOI   ScienceOn
3 T. G. Nieh, Metall. Trans. A, 15A, 139 (1984).
4 R. S. Mishra, T. R. Bieler and A. K. Mukherjee, Acta Mater., 45, 561 (1997).   DOI   ScienceOn
5 K. Matsunaga, S. Ochiai, K. Osamura, Y. Waku and T. Yamamura, J. Jpn. Inst. Light Metals, 43, 219 (1993).   DOI
6 S. K. Park, S. G. Shin, and J. H. Lee, Kor. J. Mater. Res, 13, 64 (2003).   DOI   ScienceOn
7 H. Kwon, M. Leparoux and J. M. Heintz, Met. Mater. Int., 17, 755 (2011).   DOI   ScienceOn
8 W. D. Fei, M. Hu and C. K. Yao, Mater. Sci. Eng., 356, 17 (2003).   DOI   ScienceOn
9 H. Toda, and T. Kobayashi, Metall. Mater. Trans. A, 27, 2013 (1996).   DOI
10 K. Suzuki, X. S. Huang and A. Watazu, Mater. Sci. Forum, 544/545, 443 (2007).
11 G. A. Edwards, J. Y. Yao, M. J. Couper and G. L. Dunlop, Aluminium Alloys, Their Physical and Mechanical Properties (ICAA3), p.525, ed. L. Amberg, O. Lohne, E. Nes and N. Ryum, Norwegian Institute of Technology, (1992).
12 T. Hikosaka, T. Imai, T. Kobayashi and H. Toda, J. Jpn. Inst. Light Metals, 51, 86 (2001).   DOI
13 J. Salmones, J. A. Galicia and J. A. Wang, J. Mater. Sci. Lett., 19, 1033 (2000).   DOI   ScienceOn
14 M. W. Lock and D. S. Bin, NDT '99, 295 (1999).
15 B. I. Kim and H. Yoshinaga, J. Kor. Inst. Met. & Mater., 30, 640 (1992).
16 B. I. Kim and H. Nakashima, J. Kor. Soc. Heat Treat., 5, 201 (1992).