• 제목/요약/키워드: high strain rate

검색결과 1,032건 처리시간 0.03초

Determination of spalling strength of rock by incident waveform

  • Tao, Ming;Zhao, Huatao;Li, Xibing;Ma, Jialu;Du, Kun;Xie, Xiaofeng
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental technique for determining the spalling strength of rock-like materials under a high strain rate is developed. It is observed that the spalling strength of a specimen can be determined by only knowing the wavelength, loading peak value and length of the first spallation of an incident wave under a specific loading waveform. Using this method in combination with a split-Hopkinson pressure bar (SHPB) and other experimental devices, the spalling strength of granite specimens under a high strain rate is tested. Comparisons with other experimental results show that the new measuring method can accurately calculate the dynamic tensile strength of rock materials under a high strain rate.

유리 섬유 강화 열가소성 복합재료의 1축 인장시 재료거동에 대한 연구 (A Study on the Material Behavior of Glass Fiber Reinforced Thermoplastic Composite in Uniaxial Tension)

  • Lee, J.H.
    • 한국정밀공학회지
    • /
    • 제13권8호
    • /
    • pp.96-101
    • /
    • 1996
  • Glass fiber reinforced polymeric composites hold considerable promise for increased use in low cost high volume applications because of the potential for processing by solid phase forming. Unfortunately, because of the wide variety of such materials, inherent bariability in properties, and complex temperature and strain rate dependence, large strain behavior of these materials has not been well characterized. Of particular importance is failure during processing due to localized necking instability, and it is this phenomenon that is primary focus of this study. The strain rate and temperature dependence is used to predict limiting tensile strains, based on Mackinack imperfection theory. Excellent correlation was obtained between theory and experiment, and the results are summarized in the limit strains as a function of temperature and stain rate.

  • PDF

고온 고변형률속도에서 SM45C의 동적 거동 (Dynamic Behavior of SM45C at High Strain-rate and High Temperature)

  • 양현모;민옥기
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1093-1099
    • /
    • 2007
  • A compressive split Hopkinson pressure bar (SHPB) technique is used to investigate the dynamic behavior of SM45C at high temperature. A radiant heater, which consists of one ellipsoidal reflector and one halogen lamp, is used to heat the specimen. Specimens are tested from $600^{\circ}C$ to $1000^{\circ}C$ at intervals of $100^{\circ}C$ at a strain-rate ranging from 1100/s to 1150/s. A critical phenomenon occurs between $700^{\circ}C$ and $750^{\circ}C$ in SM45C. This phenomenon results in the drastic drop in a flow stress. In a modified Johnson-Cook constitutive equation, a reducer function is used to take into account for the effect of the drastic drop in a flow stress. A reducer function, which is dependant on the temperature as well as the strain, is introduced and the parameters of the modified Johnson-Cook constitutive equation are determined from test results.

조선 해양 구조물용 강재의 소성 및 파단 특성 I: 변형률 경화 및 변형률 속도 경화의 이론적 배경 (Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening)

  • 정준모;심천식;김경수
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.134-144
    • /
    • 2011
  • In this paper, the global study trends for material behaviors are investigated regarding the static and dynamic hardenings and final fractures of marine structural steels. In particular, after reviewing all of the papers published at the 4th and 5th ICCGS (International Conference on Collision and Grounding of Ship), the used hardening and fracture properties are summarized, explicitly presenting the material properties. Although some studies have attempted to employ new plasticity and fracture models, it is obvious that most still employed an ideal hardening rule such as perfect plastic or linear hardening and a simple shear fracture criterion with an assumed value of failure strain. HSE (2001) presented pioneering study results regarding the temperature dependency of material strain hardening at various levels of temperature, but did not show strain rate hardening at intermediate or high strain rate ranges. Nemat-Nasser and Guo (2003) carried out fully coupled tests for DH-36 steel: strain hardening, strain rate hardening, and temperature hardening and softening at multiple steps of strain rates and temperatures. The main goal of this paper is to provide the theoretical background for strain and strain rate hardening. In addition, it presents the procedure and methodology needed to derive the material constants for the static hardening constitutive equations of Ludwik, Hollomon, Swift, and Ramberg-Osgood and for the dynamic hardening constitutive equations of power from Cowper-Symonds and Johnson-Cook.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

고변형률 변형하에서 재료 내부의 온도상승 계산을 위한 재료 모델링 (Material modeling of the temperature rise at high-strain-rate deformation)

  • 최덕기;유한규
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.60-68
    • /
    • 2004
  • 고속으로 비행하는 물체가 다른 물체와 충돌하는 경우에는 극히 짧은 시간에 커다란 변형이 일어나게 된다. 고변형률 변형 (high-strain-rate deformation) 에서는 소성변형이 일어나면서 상당한 열을 발생시키고 재료의 온도를 상승시킨다. 온도의 상승은 재료의 동적인 물성에 많은 영향을 미치게 되므로, 변형 시의 온도상승을 예측하는 것은 매우 중요하다. 변형시의 온도상승은 주로 전위(dislocation)의 움직임과 공공(vacancy)으로 인한 재료내의 저장에너지와 밀접한 관계를 갖게되므로, 저장 에너지의 양을 파악하는 것은 매우 중요하다. 고변형률 변형시 전위가 빠르게 움직이면서 평형상태에서의 경우보다 많은 파공공 (excess vacancies) 을 발생시키게 된다. 본 논문에서는 과공공을 포함하는 미시적 재료 모텔을 구성하고 분자동역학 (molecular dynamics, MD) 기법을 사용하여 면십입방격자 (fcc) 구조를 가지는 재료 (구리)에 대한 저장 에너지를 계산하였다.

SHPB인장 시험에서 알루미늄 합금의 진응력-진변형률 관계

  • 양현모;민옥기
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1917-1922
    • /
    • 2000
  • The split Hokinson pressure bar(SHPB) test has been used to find the mechanical property of materials at high strain rate. A tensile split Hopkinson pressure bar test system is developed and the threaded tensile specimen and the split collar are placed between elastic bars. When the compressive elastic wave generated by a striker is transferred from the transmit bar to the incident bar, some elastic wave is reflected at the threaded parts of the specimen and the transmit bar. This reflected wave can interfere with the transmitted wave. A proper length of elastic bars and the location of strain gage in these elastic bars are determined to avoid this interference. In order to avoid the interference of elastic wave reflected at the threaded parts of specimen and elastic bar, the length of transmit bar must be longer than that of incident bar. Strain gage in transmit bar must be located as close as possible from the interface of a transmit bar and specimen. In the developed tensile SHPB test system, A12011-T3 and A17075-T6 are tested to get the true stress-strain relation in the range of strain rate at $10^3/sec$

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

나노구조재료의 소성변형 성질의 변형률속도 의존성 (Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials)

  • 윤승채;김형섭
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.

토양으로부터 분리한 유화성 생체계면활성 균주의 배양 특성 (Characteristics of Culture for Emulsive Biosurfactant-Strain from the Soil)

  • 임윤택;윤용수
    • 환경위생공학
    • /
    • 제11권3호
    • /
    • pp.69-77
    • /
    • 1996
  • The result of isolated and selected to the strain having the emulsifying activity from soil's strain the strain was identified as Candida genus. The strain was investigated with culture condition at pH culture temperature, flow rate of air, strring rate etc., and physicochemical properties of the biosurfactant were examined. The optimum composition of medium for a strain cultivation were obtained as follow : glucose ; 100g/L, yeast extract ; 10g/L, urea ; 1.0g/L, KH$_{2}$PO$_{4}$ ; 50mg/L, MgSO$_{4}$ ; 500mg/L, and the op condition of cultivation was as follow : pH ; 3.0, temperatlue ; 24$\circ $C, strring rate ; 40rpm. The maximum yield of biosurfactant was obtained by pH ; 3.0-3.5, and temperature ; 25$\circ $C. The degree of emulsification of syntesized biosurfactant was increased clearly by increasing concentration of biosurfactant and it's stability was maintained for a long time. The surface tension of biosurfactant was varied with pH, especially it was showed that the surface tension was high at acidic pH.

  • PDF