• Title/Summary/Keyword: high speed spindle

Search Result 416, Processing Time 0.028 seconds

A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

Analysis of Cylindrical Hydrostatic Bearing (진원형 정수압 베어링의 해석)

  • 문호지;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1989.11a
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

Dual-Contact Tooling System for 5-Head Router Machine (5-Head Router Machine 의 이면 구속 공구 시스템)

  • 성승학;이득우;이채문;백효정;옥주선;최운집
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.788-791
    • /
    • 2004
  • This paper presents a general description of single and dual contact tooling systems, finite element analysis, and discussions on the application of the system to the 5-head router machine which is in particular for aerospace components. This study has been performed as part of the development of the new generation 5-head router machine which is designed for high productivity. Such high productivity in essence requires high speed rotation and multiple spindles in one machine. The high speed rotation may exceed a range in a conventional single contact tooling system. The conventional tooling system is reevaluated in comparison with the dual-contact system. Finite element analysis using simplified spindle models compares major differences in the two systems. Some problems in the application to the 5-head router machine are discussed.

  • PDF

A Study on Wear Characteristics of Cutting Tools in a Titanium Roughing Cut Machining (티타늄 황삭가공에 있어서 절삭공구의 마모 특성에 관한 연구)

  • Bae, Myung-whan;Jung, Hwa;Park, Hyeong-yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2016
  • The application of titanium has been gradually rising because the utilizing ranges for low weight and high strength are rapidly increased by the need for improving the fuel economy in production industries such as the aviation and automotive in recent. The purpose in this study is to investigate the appropriate cutting conditions on the life of flat and round end mills by measuring the maximum cutting temperature relative to the machining time, and calculating the wear rates of cutting tool with the spindle speed and feed rate of vertical machining center as a parameter in the titanium roughing cut machining which is widely used in critical parts of aircraft, cars, etc. When the wetted roughing cut machining of titanium with a soluble cutting oil is conducted by the flat and round end mills, the maximum cutting temperatures for a variety of spindle speed and feed rate are measured at ten-minute intervals during 60 minutes by an infrared thermometer, and the wear rates of cutting tool are calculated by the weight ratios based on tool wear before and after the experiment. It is found that the maximum cutting temperature and the wear rates of cutting tool are raised as the cutting amount per tool edge is increased with the rise of feed rate, in this experimental range, and as the frictional area due to the rise of contacting friction numbers between tool and specimen is increased with the rises of cutting time and spindle speed. In addition, the increasing rate of maximum cutting temperature in the flat and round end mills are the highest for the cutting time from 50 to 60 minutes, and the wear rate of cutting tool in the flat end mill is 1.14 to 1.55 times higher than that in the round end mill for all experimental conditions.

Optimal current angle control method of interior permanent magnet Synchronous Motors (매입형 영구자석 동기전동기의 최적 전류각 제어)

  • 김명찬;김종구;홍순찬
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.352-357
    • /
    • 1996
  • Recently, Permanent Magnet Synchronous Motor(PMSM) drives are widely used for industrial applications due to its high efficiency and high power factor control strategy. PMSM generally have two classifications such as the SPMSM(Surface Permanent Magnet Synchronous Motors) and IPMSM(Inter Permanent Magnet Synchronous Motors). IPMSA has economical merits over SPMSM in higher speed range, mechanical robustness, and higher power rate by the geometric difference. The maximum torque operation in IPMSM is realized by the current angle control which is to utilize additional reluctance torque due to a rotor saliency. In traction, spindle and compressor drives, constant power operation with higher speed range are desirable. This is simply achieved in the DC motor drives by the reduction of the field current as the speed is increased. However, in the PMSM, direct control of the magnet flux is not available. The airgap flux can be weakened by the appropriate current angle control to demagnetize. In this paper, the control method of optimal current vector in IPMSM is described in order to obtain the maximum torque or maximum output with the speed and load variations. The applied algorithm is realized by the proto system with torque and speed control Experimental results show this approach is satisfied for the high performance servo applications. (author). 6 refs., 9 figs., 1 tab.

  • PDF

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

A Study on the Rotating Ring Using Air Bearing in Yarn Manufacturing Process (방적공정에 있어서 공기 베어링을 이용한 회전링에 관한 연구)

  • Jang, Seung-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.622-630
    • /
    • 2010
  • The increase of the spindle speed to enhance the productivity in ring spinning processes has been limited by yarn tension and heat generation of the traveller/ring. The main causes of yarn tension are 1) the force added directly to the yarn by the rotation of the spindle and 2) the centrifugal force exerted by the yarn balloon generated by traveller rotation. The dominant causes of heat generation are 1) the friction between the ring and traveller and 2) the friction between the traveller and yarn. These factors cause yarn end-breaks and heat damage. In the case of the staple yarn manufacturing process for PET (polyester) and nylon (a heat plasticity material), the rotational speed of the ring spinning system has deteriorated to 10,000rpm. The objective of this study was to develop a rotating ring which has dynamic stability, high productivity and a simple structure to overcome the limitations of the conventional fixed ring/traveller system. The results of this study revealed that the spinning tension could be reduced by 67.8% using the newly developed rotating ring.

Study the effect of machining process and Nano Sio2 on GFRP mechanical performances

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, the effect of Nano silica (SiO2) on the buckling strength of the glass fiber reinforced laminates containing the machining process causes holes were investigated. The tests have been applied on two status milled and non-milled. To promote the mechanical behavior of the fiber-reinforced glass epoxy-based composites, Nano sio2 was added to the matrix to improve and gradation. Nano sio2 is chosen because of flexibility and high mechanical features; the effect of Nanoparticles on surface serenity has been studied. Thus the effect of Nanoparticles on crack growth and machining process and delamination caused by machining has been studied. We can also imply that many machining factors are essential: feed rate, thrust force, and spindle speed. Also, feed rate and spindle speed were studied in constant values, that the thrust forces were studied as the main factor caused residual stress. Moreover, entrance forces were measured by local calibrated load cells on machining devices. The results showed that the buckling load of milled laminates had been increased by about 50% with adding 2 wt% of silica in comparison with the neat damaged laminates while adding more contents caused adverse effects. Also, with a comparison of two milling tools, the cylindrical radius-end tool had less destructive effects on specimens.