• Title/Summary/Keyword: high speed railway

Search Result 2,292, Processing Time 0.037 seconds

The Conceptual Design of High Speed Railway Train System (고속전철 차량시스템의 개념설계)

  • Choi Yong-Hoon;Kim Kyoung-Taek;Yoon Se-Kyun;Chung Kyung-Ryul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.285-290
    • /
    • 2005
  • In this paper, the general process of the conceptual design of high speed train system was introduced by the review of the design process of Korea High Speed Train. The development of a general design process of high speed train is necessary in order to lead a high speed railway market in the future. For the conceptual design of high speed train system, the goals to develop a new high speed train are set. The different high speed train configurations are chosen regarding traction power, bogie type, etc and repeatedly evaluated with respect to the requirements

  • PDF

Systematic design technology and its application to High Speed Rolling Stock (체계적인 고속전철 차량설계 기술과 응용)

  • 정경렬;이병석
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.144-150
    • /
    • 2003
  • This paper shows the systematic design technology for development of new high speed rolling stock and the important item by the instance of G7 R&D project titled "Development of High Speed Railway Technology". This paper also describes core technology and concrete examples of its application during the development of high speed rolling stock.

  • PDF

High-speed Railways in Japan A Short History and Current Topics

  • Suga, Tatsuhiko
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • 'High speed' in today's railway is generally understood to mean 'regular revenue-earning operation of passenger trains at more than 200 km/h', and true high-speed services in this sense began in Japan in 1964. Today, Japan's high-speed rail network slightly exceeds 2, 000 km, carrying around 750, 000 passengers every day without any fatal accident for nearly 40 years.(omitted)

  • PDF

The Development of a finite-Element Modelling and Component Mode Synthesis Method for High-Speed railway Passenger Cars (고속전철 객차를 위한 유한요소모델링 및 모드합성기법의 개발)

  • 장경진;김홍준;이상민;박영필
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.233-240
    • /
    • 1998
  • In the design of the high-speed railway vehicles of low noise and vibration characteristics, it is desirable to develop efficient and systematic procedures for analyzing large structures. In this paper, some finite-element modelling techniques and an efficient analytical method are proposed for this purpose. The analytical method is based on substructuring approach such as a free-interface method and a generalized synthesis algorithm. In final, the proposed approaches are applied to the finite-element modelling, modal analysis and subsequent model updating procedures of the high-speed railway intermediate trailers.

  • PDF

Condition assessment for high-speed railway bridges based on train-induced strain response

  • Li, Zhonglong;Li, Shunlong;Lv, Jia;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.199-219
    • /
    • 2015
  • This paper presents the non-destructive evaluation of a high-speed railway bridge using train-induced strain responses. Based on the train-track-bridge interaction analysis, the strain responses of a high-speed railway bridge under moving trains with different operation status could be calculated. The train induced strain responses could be divided into two parts: the force vibration stage and the free vibration stage. The strain-displacement relationship is analysed and used for deriving critical displacements from theoretical stain measurements at a forced vibration stage. The derived displacements would be suitable for the condition assessment of the bridge through design specifications defined indexes and would show certain limits to the practical application. Thus, the damage identification of high-speed railways, such as the stiffness degradation location, needs to be done by comparing the measured strain response under moving trains in different states because the vehicle types of high-speed railway are relatively clear and definite. The monitored strain responses at the free vibration stage, after trains pass through the bridge, would be used for identifying the strain modes. The relationship between and the degradation degree and the strain mode shapes shows certain rules for the widely used simply supported beam bridges. The numerical simulation proves simple and effective for the proposed method to locate and quantify the stiffness degradation.

A Study on the Solution of Excessive Accelerations on the Bridge for Gyeongbu High-speed Railway (경부고속철도 교량의 과도한 가속도의 저감방안에 대한 연구)

  • Kwark, Jong-Won;Chin, Won-Jong;Choi, Eun-Suk;Cho, Jeong-Rae;Lee, Jung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.477-485
    • /
    • 2007
  • When Korean High Speed Train (KTX) runs over a high-speed railway bridge, the high-speed railway bridge gives quite large acceleration response. Local vibration at the large cross section, the impact from equally spaced sleepers, the vibration due to elastomeric bearings, and the vibration from the train itself are the causes of this acceleration response. Maximum peaks of the accelerations measured at the bridges are sometimes going over the limit value. Although it is smaller than 0.35G, the limit from the Korean Bridge Design Manual(BRDM), this acceleration response should be reduced for the safety of running trains with high speed. In this paper, to reduce the acceleration response by controlling excessive local vibration at the large cross section, vibration reduction method is studied. The result shows that the effect of elastomeric bearings on the vibration of the bridge is very large and that the vibration reduction device is effective against wing mode local vibration PSC box girder bridge for the high-speed railway, which usually has very large cross section, although it has little effect on global vibration modes such as flexural and twisting modes. The test of the vibration reduction device on the bridge in service has been performed in this study.

  • PDF

An Analysis of the Importance of Accessibility for High Speed Railway : Stated-Preference Approach (고속철도에 있어서 접근도의 중요성 분석에 관한 연구)

  • Park, D.R.;Nam, K.C.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.49-63
    • /
    • 1994
  • The introduction of high speed railway system a significant impact on the conventional inter-urban transport systems by inducing a significant traffic from the existing modes as well as generating a new traffic. It is also closely related to intra-urban transport systems as the inter-urban traffic has its origin and destination in a city. In the context of mode choice, for high speed transport systems, it has been argued that the accessibility is the most important attribute conceived by users. Thus this study attempts to analysis the importance of the accessibility for the planned high speed railway systems particularly with respect to the location of Busan Station. For this Stated-Preference approach, which is considered appropriate for such study, is adopted, and disaggregate binary logit models for mode choice between the high speed railway and air service in Busan-Seoul corridor are developed. The elasticities for cost and service variables are also derived. The results disclose that cost is the most important which is inconsistent with most previous studies ; accessibility has considerable impact on the choice ; and frequency however has a little impacts. Concerning location of the high speed railway station the results suggest that the longer the access distance is, the more important the accessibility is. This implies that the connection of reliable access transport services such as underground are essential between the terminal and urban center.

  • PDF

Review on the Dynamic Behavior of G7 High Speed Train(KHST) in the KTX Test Line (경부고속철도 시험선 구간에서 G7 고속전철 차량의 동특성 검토)

  • 박찬경;김영국;배대성;박태원
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.131-137
    • /
    • 2001
  • The dynamic behavior of high speed train is very important because of its safety and passengers' ride comfort. The railway vehicle is composed of many suspension components, such as 1st springs, 1st dampers, 2nd springs and 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and the track geometry affect the dynamic behavior of high speed train. This paper reviews the dynamic behavior of KHST in the KTX test line. The VAMPIRE program is used for this simulation. The simulation results are within the limits of safety criteria. Thus the KHST can operate safely at 350 km/h in the KTX test line.

  • PDF

고속철도 교량 신축이음장치의 내구성 실험

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.24-29
    • /
    • 1998
  • To absorb the deformation of ,external live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction Authority.

  • PDF

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.