• Title/Summary/Keyword: high speed forming

Search Result 186, Processing Time 0.029 seconds

Track Deterioration Prediction and Scheduling for Preventive Maintenance of Railroad (궤도 유지보수를 위한 틀림진전 예측 및 일정최적화)

  • Kim, Dae-Young;Lee, Seong-Geun;Lee, Ki-Woo;Woo, Byoung-Koo;Lee, Sung-Uk;Kim, Ki-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1359-1370
    • /
    • 2008
  • In the track geometry such as rails, sleepers, ballasts and fastener, track deterioration occurs by repetitive train weight and the high-speed railway takes a trend faster than normal. Track deterioration of over threshold value harms ride comfort and furthermore affect in trains safety seriously. An organic and systematic track maintenance system is very important because a trend of the track deterioration effects on track life-cycle and running safety. Also costs of the railway track permanent way and its maintenance are extremely large, forming a significant part of the total infrastructure expenditure. Therefor reasonable and efficient track maintenance has to be planed on a budget. It is required to carry out not only corrective maintenance but preventive maintenance for the track maintenance. In order to perform maintenance jobs in the boundary of the machines and resources given regarding the type and amount jobs, it is necessary to determine feasible or optimal scheduling considering the priority. In this study, the system organization and required functions for the development of track maintenance system supported track deterioration prediction and optimal scheduling are proposed.

  • PDF

Surface Characteristics of Tool Steel Machined Using Micro-EDM

  • Anwar, Mohammed Muntakim;San, Wong Yoke;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.74-78
    • /
    • 2008
  • High-speed tool steels are extensively used in tooling industries for manufacturing cutting tools, forming tools, and rolls. Electrical discharge machining (EDM) has been found to be an effective process for machining these extremely hard and difficult-to-cut materials. Extensive research has been conducted to identify the optimum machining parameters for EDM with different tool steels. This paper presents a fundamental study of the surface characteristics of SKH-51 tool steel machined by micro-EDM, with particular focus on obtaining a better surface finish. An RC pulse generator was used to obtain a better surface finish as it produces fine discharge craters. The main operating parameters studied were the gap voltage and the capacitance while the resistance and other gap control parameters were kept constant. A negative tungsten electrode was used in this study. The micro-EDM performance was analyzed by atomic force microscopy to determine the average surface roughness and the distance between the highest peak and lowest valley. The topography of the machined surface was observed using a scanning electron microscope and a digital optical microscope.

Design of Real-Time Digital Multi-Beamformer of Digital Array Antenna System for MFR (다기능레이다에 적용 가능한 디지털배열안테나 시스템의 실시간 디지털다중빔형성기 설계)

  • Hwang, SungHwan;Kim, HanSaeng;Lim, JaeHwan;Joo, JoungMyoung;Lee, KiWon;Kwon, MinSang;Kim, Woo-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.151-159
    • /
    • 2022
  • In this paper, we implement a digital multi-beamformer using FPGA(Field Programmable Gate Array) which has advantages in parallel and real-time data processing. This is accomplished through the use of not only high-speed data communication but also multiple beam forming, which is currently required by MFR(Multi Function Radar). As a result, the beamformer can process 24 Gbps throughput in real-time and form 5 digital beams at the same time. It is also compared to the results of Matlab simulations. We demonstrate how an implemented beamformer can be used in an MFR system by using a digital array antenna.

A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining (평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Fruit Grading Algorithms of Multi-purpose Fruit Grader Using Black at White Image Processing System (흑백영상처리장치를 이용한 다목적 과실선별기의 등급판정 알고리즘 개발)

  • 노상하;이종환;황인근
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.95-103
    • /
    • 1995
  • A series of study has been conducted to develop a multi-purpose fruit grader using a black & white image processing system equipped with a 550 nm interference filter. A device and high performance algorithms were developed for sizing and color grading of Fuji apple in the previous study. In this study an emphasis was put on finding correlations between weights of several kinds of fruits and their area fractions(AF), and on compensating the blurring effect upon sizing and color grading by conveying speed of fruit. Also, the effect of orientation and direction of fruit on conveyor during image forming was analyzed to identify any difficulty (or utilizing an automatic fruit feeder. The results are summarized as follows. 1. The correlation coefficients(r) between the weights of fruits and their image sizes were 0.984~0.996 for apples, 0.983~0.990 for peachs, 0.995 for tomato, 0.986 for sweet persimmon and 0.970~0.993 for pears. 2. It was possible to grade fruits by color with the area weighted mean gray values(AWMGV) based on the mean gray valves of direct image and the compensated values of reflected image of a fruit, and also possible to sort fruits by size with AF. Accuracies in sizing and color grading ranged over 81.0% ~95.0% and 82.0% ~89.7% respectively as compared with results from sizing by electronic weight scale and grading by expert. 3. The blurring effect on the sizing and color grading depending on conveying speed was identified and regression equations were derived. 4. It was found that errors in sizing and coloring grading due to the change in direction and orientation of Fuji apple on the conveyor were not significant as far as the stem end of apple keeping upward.

  • PDF

Fabrication of Porous Titanium Parts by Direct Laser Melting of Ti-TiH2 Mixing Powder (Ti-TiH2 혼합 분말의 레이저 직접 용융 공정을 이용한 다공성 티타 늄 부품 제조 연구)

  • Yun, H.J.;Seo, D.M.;Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • Direct Laser Melting (DLM) of $Ti-xTiH_2$ (mixing ratio x = 2, 5, 10 wt.%) blended powder is characterized by producing porous titanium parts. When a high energy laser is irradiated on a $Ti-TiH_2$ blended powder, hydrogen gas ($H_2$) is produced by the accompanying decomposition of the $TiH_2$ powder, and acts as a pore-forming and activator. The hydrogen gas trapped in a rapidly solidified molten pool, which generates porosity in the deposited layer. In this study, the effects of a $TiH_2$ mixing ratio and the associated processing parameters on the development of a porous titanium were investigated. It was determined that as the content of $TiH_2$ increases, the resulting porosity density also increases, due to the increase of $H_2$ produced by $TiH_2$. Also, porosity increases as the scan speed increases. As fast solidified melting pools do not provide enough time for $H_2$ to escape, the faster the scan speed, the more the resulting $H_2$ is captured by the process. The results of this study show that the mixing ratio (x) and laser machining parameters can be adjusted to actively generate and control the porosity of the DLM parts.

Characteristics of Variation of Sea Surface Temperature in the East Sea with the Passage of Typhoons (태풍의 이동경로에 따른 동해연안 수온변화 특성)

  • Park, Myung-Hee;Lee, Joon-Soo;Suh, Young-Sang;Kim, Hae-Dong;Bae, Hun-Kyun
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1657-1671
    • /
    • 2015
  • In this study, the wind direction and the wind speed of the nearest temperature observations point of the National Weather Service was analyzed in order to investigate the rapid rise and drop of water temperature in the East Coast appeared after passing of the 2015 typhoon No. 9 and 11. Then the figures were simulated and analyzed using the WRF(weather research and forecast) model to investigate in more detailed path of the typhoon as well as the changes in the wind field. The results were as follows. A sudden drop of water temperature was confirmed due to upwelling on the East coast when ninth typhoon Chanhom is transformed from tropical cyclones into extra tropical cyclone, then kept moving eastwards from Pyongyang forming a strong southerly wind after 13th and this phenomenon lasted for two days. The high SST(sea surface temperature) is confirmed due to a strong northerly wind by 11th typhoon Nangka. This strong wind directly affected the east coast for three days causing the Ekman effect which transported high offshore surface waters to the coast. The downwelling occurred causing an accumulation of high temperature surface water. As a results, the SST of 15m and 25m rose to that of 5m.

Characteristics of SiO2 Gas Barrier Films as a Function of Process Conditions in Facing Target Sputtering (FTS) System (대향타겟식 스퍼터링 장치의 공정 조건에 따른 SiO2 가스 차단막의 특성)

  • Bae, Kang;Wang, Tae-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Hong, Jae-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.595-601
    • /
    • 2009
  • For the silicon oxide $(SiO_x)$ films prepared by using the facing target sputtering (FTS) apparatus that was manufactured to enhance the preciseness of the fabricated thin-film and sputtering yield rate by forming a higher-density plasma in the electrical discharge space for using it as a thin-film passivation system for flexible organic light emitting devices (FOLEDs). The deposition characteristics were investigated under various process conditions, such as array of the cathode magnets, oxygen concentration$(O_2/Ar+O_2)$ introduced during deposition, and variations of distance between two targets and working pressure. We report that the optimum conditions for our FTS apparatus for the deposition of the $SiO_x$ films are as follows: $d_{TS}\;and\;d_{TT}$ are 90mm and 120mm, respectively and the maximum deposition rate is obtained under a gas pressure of 2 mTorr with an oxygen concentration of 3.3%. Under this optimum conditions, it was found that the $SiO_x$ film was grown with a very high deposition rate of $250{\AA}$/min by rf-power of $4.4W/cm^2$, which was significantly enhanced as compared with a deposition rate (${\sim}55{\AA})$/min) of the conventional sputtering system. We also reported that the FTS system is a suitable method for the high speed and the low temperature deposition, the plasma free deposition, and the mass-production.

The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (II) - Laser Weldability of Hot Stamping Steel with Ultra-High Strength - (레이저 열원을 이용한 보론강 및 핫스탬핑강의 용접특성에 관한 연구 (II) - 초고강도 핫스탬핑강의 레이저 용접특성 -)

  • Kim, Jong Do;Choi, So Young;Park, In Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1373-1377
    • /
    • 2014
  • Hot-stamping is a method of obtaining ultrahigh-strength steel by simultaneously forming and cooling boron steel in a press die after it has been heated at $900^{\circ}C$ or above. After heat treatment, boron steel has a strength of 1500 MPa or more. This material ensures a high level of quality because it overcomes the spring-back phenomenon, which is a problem associated with high-strength steel materials, and the degree of dimensional precision is improved by 90 or more because of the good formability compared with existing types of steel. In this study, the welding characteristics were identified through the butt and lap welding of hot-stamped steel using a disk laser. Full penetration was obtained at a faster speed with butt welding compared to lap welding, and a white band was observed in every specimen.