• Title/Summary/Keyword: high resolution video

Search Result 261, Processing Time 0.023 seconds

Two-Step Rate Distortion Optimization Algorithm for High Efficiency Video Coding

  • Goswami, Kalyan;Lee, Dae Yeol;Kim, Jongho;Jeong, Seyoon;Kim, Hui Yong;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.311-316
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) is the newest video coding standard for improvement in video data compression. This new standard provides a significant improvement in picture quality, especially for high-resolution videos. A quadtree-based structure is created for the encoding and decoding processes and the rate-distortion (RD) cost is calculated for all possible dimensions of coding units in the quadtree. To get the best combination of the block an optimization process is performed in the encoder, called rate distortion optimization (RDO). In this work we are proposing a novel approach to enhance the overall RDO process of HEVC encoder. The proposed algorithm is performed in two steps. In the first step, like HEVC, it performs general rate distortion optimization. The second step is an extra checking where a SSIM based cost is evaluated. Moreover, a fast SSIM (FSSIM) calculation technique is also proposed in this paper.

A Study on the High Quality 360 VR Tiled Video Edge Streaming (방송 케이블 망 기반 고품질 360 VR 분할 영상 엣지 스트리밍에 관한 연구)

  • Kim, Hyun-Wook;Yang, Jin-Wook;Yoon, Sang-Pil;Jang, Jun-Hwan;Park, Woo-Chool
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.43-52
    • /
    • 2019
  • 360 Virtual Reality(VR) service is getting attention in the domestic streaming market as 5G era is upcoming. However, existing IPTV-based 360 VR video services use upto 4K 360 VR video which is not enough to satisfy customers. It is generally required that over 8K resolution is necessary to meet users' satisfaction level. The bit rate of 8K resolution video exceeds the bandwidth of single QAM channel(38.817mbps), which means that it is impossible to provide 8K resolution video via the IPTV broadcast network environment. Therefore, we suggest and implement the edge streaming system for low-latency streaming to the display devices in the local network. We conducted experiments and confirmed that 360 VR streaming with a viewport switching delay less than 500ms can be achieved while using less than 100mbps of the network bandwidth.

Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems (지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계)

  • Kim, Cho-Rong;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.22-30
    • /
    • 2011
  • Recently, the rising demand for intelligent video surveillance system leads to high-performance face recognition systems. The solution for low-resolution images acquired by a long-distance camera is required to overcome the distance limits of the existing face recognition systems. For that reason, this paper proposes a hardware design of an image resolution enhancement algorithm for real-time intelligent video surveillance systems. The algorithm is synthesizing a high-resolution face image from an input low-resolution image, with the help of a large collection of other high-resolution face images, called training set. When we checked the performance of the algorithm at 32bit RISC micro-processor, the entire operation took about 25 sec, which is inappropriate for real-time target applications. Based on the result, we implemented the hardware module and verified it using Xilinx Virtex-4 and ARM9-based embedded processor(S3C2440A). The designed hardware can complete the whole operation within 33 msec, so it can deal with 30 frames per second. We expect that the proposed hardware could be one of the solutions not only for real-time processing at the embedded environment, but also for an easy integration with existing face recognition system.

Development CMOS Sensor-Based Portable Video Scope and It's Image Processing Application (CMOS 센서를 이용한 휴대용 비디오스코프 및 영상처리 응용환경 개발)

  • 김상진;김기만;강진영;김영욱;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.517-520
    • /
    • 2003
  • Commercial video scope use CCD sensor and frame grabber for image capture and A/D interface but application limited by input resolution and high cost. In this paper we introduce portable video scope using CMOS sensor, USB pen and tuner card (low frame grabber) in place of commercial CCD sensor and frame grabber. Our video scope serves as an essential link between advancing commercial technology and research, providing cost effective solutions for educational, engineering and medical applications across an entire spectrum of needs. The software implementation is done using Direct Show in second version after initial trials using First version VFW (video for window), which gave very low frame rate. Our video scope operates on windows 98, ME, XP, 2000. The drawback of our video scope is crossover problem in output images caused due to interpolation, which has to be rectified for more efficient performance.

  • PDF

An Analysis of Memory Access Complexity for HEVC Decoder (HEVC 복호화기의 메모리 접근 복잡도 분석)

  • Jo, Song Hyun;Kim, Youngnam;Song, Yong Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.114-124
    • /
    • 2014
  • HEVC is a state-of-the-art video coding standard developed by JCT-VC. HEVC provides about 2 times higher subjective coding efficiency than H.264/AVC. One of the main goal of HEVC development is to efficiently coding UHD resolution video so that HEVC is expected to be widely used for coding UHD resolution video. Decoding such high resolution video generates a large number of memory accesses, so a decoding system needs high-bandwidth for memory system and/or internal communication architecture. In order to determine such requirements, this paper presents an analysis of the memory access complexity for HEVC decoder. we first estimate the amount of memory access performed by software HEVC decoder on an embedded system and a desktop computer. Then, we present the memory bandwidth models for HEVC decoder by analyzing the data flow of HEVC decoding tools. Experimental results show the software decoder produce 6.9-40.5 GB/s of DRAM accesses. also, the analysis reveals the hardware decoder requires 2.4 GB/s of DRAM bandwidth.

Temporally-Consistent High-Resolution Depth Video Generation in Background Region (배경 영역의 시간적 일관성이 향상된 고해상도 깊이 동영상 생성 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.414-420
    • /
    • 2015
  • The quality of depth images is important in the 3D video system to represent complete 3D contents. However, the original depth image from a depth camera has a low resolution and a flickering problem which shows vibrating depth values in terms of temporal meaning. This problem causes an uncomfortable feeling when we look 3D contents. In order to solve a low resolution problem, we employ 3D warping and a depth weighted joint bilateral filter. A temporal mean filter can be applied to solve the flickering problem while we encounter a residual spectrum problem in the depth image. Thus, after classifying foreground andbackground regions, we use an upsampled depth image for a foreground region and temporal mean image for background region.Test results shows that the proposed method generates a time consistent depth video with a high resolution.

HDMI Resolution Control of Smart Platform with WiFi Channel Analysis (WiFi 채널분석에 따른 스마트 플랫폼의 HDMI 해상도 조정)

  • Hong, Sung-Chan;Kang, Min-Goo
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we proposed the novel algorithm which controls the resolution of the HDMI(High Definition Multimedia Interface) by the channel estimation from WiFi-AP(Access Point) in the ISM(Industry-Science-Medical) band. The 2.4 and 5 GHz channel models are widely used since they have identical RF property as RSSI(Received Signal Strength Indication). Especially, the performance degradation of signal-transmission and streaming of WiFi will be occurred by the co-channel interference between AP(Access Point) and increased number of smart devices. Therefore, the optimization scheme of video format timing was designed by HDMI-CEC(Consumer Electronics Control) which considers the transmission speed of radio channel. The HDMI resolution, video quality of home-gateway and digital TV and the decision of PIP position can be maintained by the protocols between smart devices and DLNA(Digital Living Network Alliance) via proposed technique.

Performance Analysis of HEVC Parallelization Methods for High-Resolution Videos

  • Ryu, Hochan;Ahn, Yong-Jo;Mok, Jung-Soo;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Several parallelization methods that can be applied to High Efficiency Video Coding (HEVC) decoders are evaluated. The market requirements of high-resolution videos, such as Full HD and UHD, have been increasing. To satisfy the market requirements, several parallelization methods for HEVC decoders have been studied. Understanding these parallelization methods and objective comparisons of these methods are crucial to the real-time decoding of high-resolution videos. This paper introduces the parallelization methods that can be used in HEVC decoders and evaluates the parallelization methods comparatively. The experimental results show that the average speed-up factors of tile-level parallelism, wavefront parallel processing (WPP), frame-level parallelism, and 2D-wavefront parallelism are observed up to 4.59, 4.00, 2.20, and 3.16, respectively.

Exploring Image Processing and Image Restoration Techniques

  • Omarov, Batyrkhan Sultanovich;Altayeva, Aigerim Bakatkaliyevna;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2015
  • Because of the development of computers and high-technology applications, all devices that we use have become more intelligent. In recent years, security and surveillance systems have become more complicated as well. Before new technologies included video surveillance systems, security cameras were used only for recording events as they occurred, and a human had to analyze the recorded data. Nowadays, computers are used for video analytics, and video surveillance systems have become more autonomous and automated. The types of security cameras have also changed, and the market offers different kinds of cameras with integrated software. Even though there is a variety of hardware, their capabilities leave a lot to be desired. Therefore, this drawback is trying to compensate by dint of computer program solutions. Image processing is a very important part of video surveillance and security systems. Capturing an image exactly as it appears in the real world is difficult if not impossible. There is always noise to deal with. This is caused by the graininess of the emulsion, low resolution of the camera sensors, motion blur caused by movements and drag, focus problems, depth-of-field issues, or the imperfect nature of the camera lens. This paper reviews image processing, pattern recognition, and image digitization techniques, which will be useful in security services, to analyze bio-images, for image restoration, and for object classification.

Performance Comparison of HEVC and H.264/AVC Standards in Broadcasting Environments

  • Dissanayake, Maheshi B.;Abeyrathna, Dilanga L.B.
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.483-494
    • /
    • 2015
  • High Efficiency Video Coding (HEVC) is the most recent video codec standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goal of this newly introduced standard is for catering to high-resolution video in low bandwidth environments with a higher compression ratio. This paper provides a performance comparison between HEVC and H.264/AVC video compression standards in terms of objective quality, delay, and complexity in the broadcasting environment. The experimental investigation was carried out using six test sequences in the random access configuration of the HEVC test model (HM), the HEVC reference software. This was also carried out in similar configuration settings of the Joint Scalable Video Module (JSVM), the official scalable H.264/AVC reference implementation, running on a single layer mode. According to the results obtained, the HM achieves more than double the compression ratio compared to that of JSVM and delivers the same video quality at half the bitrate. Yet, the HM encodes two times slower (at most) than JSVM. Hence, it can be concluded that the application scenarios of HM and JSVM should be judiciously selected considering the availability of system resources. For instance, HM is not suitable for low delay applications, but it can be used effectively in low bandwidth environments.