• Title/Summary/Keyword: high resolution spectrum

Search Result 253, Processing Time 0.028 seconds

Assessment of New High-resolution Regional Climatology in the East/Japan Sea

  • Lee, Jae-Ho;Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2021
  • This study provides comprehensive assessment results for the most recent high-resolution regional climatology in the East/Japan Sea by comparing with the various existing climatologies. This new high-resolution climatology is generated based on the Optimal Interpolation (OI) method with individual profiles from the World Ocean Database and gridded World Ocean Atlas provided by the National Centers for Environmental Information (NCEI). It was generated from the recent previous study which had a primary focus to solve the abnormal horizontal gradient problem appearing in the other high-resolution climatology version of NCEI. This study showed that this new OI field simulates well the meso-scale features including closed-curve temperature spatial distribution associated with eddy formation. Quantitative spatial variability was compared to the other four different climatologies and significant variability at 160 km was presented through a wavelet spectrum analysis. In addition, the general improvement of the new OI field except for warm bias in the coastal area was confirmed from the comparison with serial observation data provided by the National Fisheries Research and Development Institute's Korean Oceanic Data Center.

High Resolution AR Spectral Estimation by Principal Component Analysis (Principal Componet Analysis에 의한 고 분해능 AR 모델링과 스텍트럼 추정)

  • 양흥석;이석원;공성곤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.813-818
    • /
    • 1987
  • In this paper, high resolution spectral estimation by AR modelling and principal comonent analysis is proposed. The given data can be expanded by the eigenvectors of the estimated covariance matrix. The eigenspectrum is obtained for each eigenvector using the Autoressive(AR) spectral estimation technique. The final spectrum estimate is obtained by weighting each eigenspectrum with the corresponding eigenvalue and summing them. Although the proposed method increases in computational complexity, it shows good frequency resolution especially for short data records and narrow-band data whose signal-to-noise ratio is low.

Variations of imaging depth and chloroplast emission spectrum of Arabidopsis thaliana with excitation wavelength in two-photon microscopy (이광자현미경 여기 광 파장에 따른 Arabidopsis thaliana 촬영 깊이 및 엽록체 형광 스펙트럼의 변화)

  • Joo, Yongjoon;Son, Si Hyung;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Two-photon microscopy (TPM) has been used in plant research as a high-resolution high-depth 3D imaging modality. However, TPM is known to induce photo-damage to the plant in case of long time exposure, and optimal excitation wavelength for plant imaging has not been investigated. Longer excitation wavelength may be appropriate for in vivo two-photon imaging of Arabidopsis thaliana leaves, and effects of longer excitation wavelength were investigated in terms of imaging depth, emission spectrum. Changes of emission spectrum as a function of exposure time at longer excitation wavelength were measured for in vivo longitudinal imaging. Imaging depth was not changed much probably because photon scattering at the cell wall was a limiting factor. Chloroplast emission spectrum showed its intensity peak shift by 20 nm with transition of excitation wavelength from 849 nm or below to 850 nm or higher. Emission spectrum showed different change patterns with excitation wavelengths in longitudinal imaging. Longer excitation wavelengths appeared to interact with chloroplasts differently in comparison with 780 nm excitation wavelength, and may be good for in vivo imaging.

Estimation of Doppler Spectrum Modes in a Weather Radar for Detection of Hazardous Weather Conditions

  • Lee, Jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.205-210
    • /
    • 2002
  • In a Doppler weather radar, high resolution windspeed profile measurements are needed to provide the reliable detection of hazardous weather conditions. For this purpose, the pulse pair method is generally considered to be the most efficient estimator, However, this estimator has some bias errors due to asymmetric spectra and may yield meaningless results in the case of a multimodal return spectrum. Although the poly-pulse pair method can reduce the bias errors of skewed weather spectra, the modes of spectrum may provide more reliable information than the statistical mean for the case of a multimodal or seriously skewed spectrum. Therefore, the idea of relatively simple mode estimator for a weather radar is developed in this paper, Performance simulations show promising results in the detection of hazardous weather conditions.

Identification and Determination of Oil Pollutants Based on 3-D Fluorescence Spectrum Combined with Self-weighted Alternating Trilinear Decomposition Algorithm

  • Cheng, Pengfei;Wang, Yutian;Chen, Zhikun;Yang, Zhe
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.204-211
    • /
    • 2016
  • Oil pollution seriously endangers the biological environment and human health. Due to the diversity of oils and the complexity of oil composition, it is of great significance to identify the oil contaminants. The 3-D fluorescence spectrum combined with a second order correction algorithm was adopted to measure an oil mixture with overlapped fluorescence spectra. The self-weighted alternating trilinear decomposition (SWATLD) is a kind of second order correction, which has developed rapidly in recent years. Micellar solutions of #0 diesel, #93 gasoline and ordinary kerosene in different concentrations were made up. The 3-D fluorescence spectra of the mixed oil solutions were measured by a FLS920 fluorescence spectrometer. The SWATLD algorithm was applied to decompose the spectrum data. The predict concentration and recovery rate obtained by the experiment show that the SWATLD algorithm has advantages of insensitivity to component number and high resolution for mixed oils.

Automatic Velocity Analysis by using an High-resolution Bootstrapped Differential Semblance Method (고해상도 Bootstrapped Differential Semblance를 이용한 자동 속도분석)

  • Choi, Hyungwook;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.225-233
    • /
    • 2013
  • The accuracy of the automatic NMO velocity analysis, which is used for an effective and objective NMO velocity analysis, is highly affected by the velocity resolution of the velocity spectrum. In this study, we have developed an automatic NMO velocity algorithm, where the velocity spectra are created using high-resolution bootstrapped differential semblance (BDS), and the velocity analysis on CMP gathers is performed in parallel with MPI. We also compared the velocity models from the developed automatic NMO velocity algorithm with high-resolution BDS to those from BDS. To verify the developed automatic velocity analysis module we created synthetic seismic data from a velocity model including horizon layers. We confirmed that the developed automatic velocity analysis module estimated velocity more accurately. In addition, NMO velocity which yielded a CMP stacked section, where the coherency of the events were improved, was estimated when the developed module was applied to a marine field data set.

In vivo functional photoacoustic imaging (나노초 레이져를 이용한 광-초음파 이미지 결상법)

  • Oh, Jung-Taek;Li, Meng-Lin;Song, Kwang-Hyun;Xie, Xueyi;Stoica, George;Wang, Lihong V.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.02a
    • /
    • pp.359-360
    • /
    • 2006
  • Functional photoacoustic tomography is a new non-invasive imaging modality, and it is emerging as a very practical method for imaging biological tissue structures by means of laser-induced ultrasound. Structures with high optical absorption, such as blood vessels, can be imaged with the spatial resolution of ultrasound, which is not limited by the strong light scattering in biological tissues. By varying wavelengths of the laser light and acquiring photoacoustic images, optical absorption spectrum of each image pixel is found. Since the biochemical constituents of tissues determine the spectrum, useful functional information like oxygen saturation ($SO_2$) and total haemoglobin concentration (HbT) can be extracted. In this study, as a proof-of-principle experiment, hypoxic brain tumor vasculature and traumatic brain injury (TBI) of small animal brain are imaged with functional photoacoustic tomography. High resolution brain vasculature images of oxygen saturation and total hemoglobin concentration are provided to visualize hypoxic tumor vasculature, and hemorrhage on the cortex surface by the TBI.

  • PDF

Data Interpretation Methods for Petroleomics

  • Islam, Annana;Cho, Yun-Ju;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.63-67
    • /
    • 2012
  • The need of heavy and unconventional crude oil as an energy source is increasing day by day, so does the importance of petroleomics: the pursuit of detailed knowledge of heavy crude oil. Crude oil needs techniques with ultra-high resolving capabilities to resolve its complex characteristics. Therefore, ultra-high resolution mass spectrometry represented by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been successfully applied to the study of heavy and unconventional crude oils. The analysis of crude oil with high resolution mass spectrometry (FT-ICR MS) has pushed analysis to the limits of instrumental and methodological capabilities. Each high-resolution mass spectrum of crude oil may routinely contain over 50,000 peaks. To visualize and effectively study the large amount of data sets is not trivial. Therefore, data processing and visualization methods such as Kendrick mass defect and van Krevelen analyses and statistical analyses have played an important role. In this regard, it will not be an overstatement to say that the success of FT-ICR MS to the study of crude oil has been critically dependent on data processing methods. Therefore, this review offers introduction to peotroleomic data interpretation methods.