• Title/Summary/Keyword: high resolution X-ray diffraction

Search Result 206, Processing Time 0.026 seconds

High pressure X-ray diffraction study on a graphite using Synchrotron Radiation (고압하에서 방사광을 이용한 흑연에 대한 연구)

  • Kim, Young-Ho;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1994
  • High pressure X-ray diffraction study was carried out on a graphite to investigate its compressibility as well as any possible phase transition to the hexagonal diamond structure at room temperature. Energy dispersive X-ray diffraction method was introduced using a Mao-Bell type diamond anvil cell with Synchrotron Radiation. Polycrystalline sodium chloride was compressed together with graphite for the high pressure determinations. Because of the poor resolution of the X-ray diffraction pattern of graphite, its compressibility was estimated to be almost same as that of NaCl by graphite (002) X-ray diffraction peak only. An observation of any new peak from a possible hexagonal diamond phase seems very unplausible for its definite identification based on the present data. Alternative approaches such as an Wiggler Radiation source as well as a Large Volume high pressure apparatus will be necessary for the detailed studies on a graphite in future.

  • PDF

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R.;Moon, Juhyuk;Yoon, Seyoon;Bae, Sungchul;Levitz, Pierre;Winarski, Robert;Monteiro, Paulo J.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.

Coherent X-ray Diffraction Imaging with Single-pulse Table-top Soft X-ray Laser

  • Kang, Hyon-Chol;Kim, H.T.;Lee, S.K.;Kim, C.M.;Choi, I.W.;Yu, T.J.;Sung, J.H.;Hafz, N.;Jeong, T.M.;Kang, S.W.;Jin, Y.Y.;Noh, Y.C.;Ko, D.K.;Kim, S.S.;Marathe, S.;Kim, S.N.;Kim, C.;Noh, D.Y.;Lee, J.
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.429-430
    • /
    • 2008
  • We demonstrate coherent x-ray diffraction imaging using table-top x-ray laser at a wavelength of 13.9nm driven by 10-Hz ti:Sapphire laser system at the Advanced Photonics Research Institute in Korea. Since the flux of x-ray photons reaches as high as $10^9$ photons/pulse in a $20{\times}20{\mu}m^2$ field of view, we measured a ingle-pulse diffraction pattern of a micrometer-scale object with high dynamic range of diffraction intensities and successfully reconstructed to the image using phase retrieval algorithm with an oversampling ratio of 1:6. the imaging resolution is $^{\sim}150$ nm, while that is much improved by stacking the many diffraction patterns. This demonstration can be extended to the biological sample with the diffraction limited resolution.

  • PDF

Modification of conventional X-ray diffractometer for the measurement of phase distribution in a narrow region

  • Park, Yang-Soon;Han, Sun-Ho;Kim, Jong-Goo;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.407-414
    • /
    • 2006
  • An X-ray diffractometer for spatially resolved X-ray diffraction measurements was developed to identify phase in the narrow (micron-scaled) region of high burn-up fuels and some nuclear materials. The micro-XRD was composed of an X-ray microbeam alignment system and a sample micro translation system instead of a normal slit and a fixed sample stage in a commercial XRD. The X-ray microbeam alignment system was fabricated with a microbeam concentrator having two Ni deposited mirrors, a vertical positioner, and a tilt table for the generation of a concentrated microbeam. The sample micro translation system was made with a sample holder and a horizontal translator, allowing movement of a specimen at $5{\mu}m$ steps. The angular intensity profile of the microbeam generated through a concentrator was symmetric and not distorted. The size of the microbeam was $4,000{\times}20{\mu}m$ and the spatial resolution of the beam was $47{\mu}m$ at the sample position. When the diffraction peaks were measured for a $UO_2$ pellet specimen by this system, the reproducibility ($2{\Theta}={\pm}0.01^{\circ}$) of the peaks was as good as a conventional X-ray diffractometer. For the cross section of oxidized titanium metal, not only $TiO_2$ in an outer layer but also TiO near an oxide-metal interface was observed.

Residual Stress Measurement on Welded Specimen by Neutron Diffraction (중성자 회절을 이용한 용접부위의 잔류응력 측정)

  • 박만진;장동영;최희동
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.50-58
    • /
    • 2002
  • Residual stress is generated in the structures as a result of irregular elastic-plastic deformation during fabrication processes such as welding, heat treatment, and mechanical processing. There are several factors attributed to the origin of residual stresses, tensile or compressive. The stresses can be determined by destructive ways or nondestructive ways using X-ray or neutron diffraction. Although X-ray diffraction is a well established technique, it is practically limited to near-surface stresses. Neutrons penetrate easily into most materials and neutron diffraction permits non-destructive evaluation of lattice strain within the bulk of large specimens because the radiation is more deeply penetrating for metallic engineering components. This paper presented application of neutron diffraction technique to the residual stress measurement using 20 mm thick welded stainless steel plate($100{\times}100 \textrm{mm}^2$)

Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction (기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석)

  • 이충효;조재문;이상진;심해섭;이창희
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.664-664
    • /
    • 2001
  • The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

Monitoring Oxidation Behavior of [C70]Fullerene by Ultrasonic Spectroscopy ([C70]풀러렌 산화 반응의 거동에 관한 초음파 분광학적 고찰)

  • Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.155-159
    • /
    • 2014
  • High resolution ultrasonic spectroscopy was used to observe the oxidation of [$C_{70}$]fullerene with 3-chloroperoxy benzoic acid in 1,2-dichlorobenzene. UV-vis spectroscopy and X-ray diffraction confirmed the resulting roducts of [$C_{70}$]fullerene oxidation.

Microscopic Analysis of High Lithium-Ion Conducting Glass-Ceramic Sulfides

  • Park, Mansoo;Jung, Wo Dum;Choi, Sungjun;Son, Kihyun;Jung, Hun-Gi;Kim, Byung-Kook;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Hyoungchul
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.568-573
    • /
    • 2016
  • We explore the crystalline structure and phase transition of lithium thiophosphate ($Li_7P_3S_{11}$) solid electrolyte using electron microscopy and X-ray diffraction. The glass-like $Li_7P_3S_{11}$ powder is prepared by the high-energy mechanical milling process. According to the energy dispersive X-ray spectroscopy (EDS) and selected area diffraction (SAD) analysis, the glass powder shows chemical homogeneity without noticeable contrast variation at any specific spot in the specimen and amorphous SAD ring patterns. Upon heating up to $260^{\circ}C$ the glass $Li_7P_3S_{11}$ powder becomes crystallized, clearly representing crystal plane diffraction contrast in the high-resolution transmission electron microscopy image. We further confirm that each diffraction spot precisely corresponds to the diffraction from a particular $Li_7P_3S_{11}$ crystallographic structure, which is also in good agreement with the previous X-ray diffraction results. We expect that the microscopic analysis with EDS and SAD patterns would permit a new approach to study in the atomic scale of other lithium ion conducting sulfides.