• Title/Summary/Keyword: high range resolution

Search Result 787, Processing Time 0.032 seconds

IGRINS Spectral Library

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Jeong, Ueejeong;Yuk, In-Soo;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.71.2-71.2
    • /
    • 2015
  • We present the high-resolution near-infrared spectra of standard stars observed with Immersion Grating Infrared Spectrograph (IGRINS). IGRINS covers the full spectral range of H and K bands simultaneously with a high spectral resolution (R=40,000), revealing many previously undetected and/or unknown lines. In this work, we present preliminary results of spectroscopic diagnostics for stellar physical parameters. Our ultimate goal is to provide a library of near-infrared spectra of standard stars, which covers all spectral types and luminosity classes, with a high-resolution and high signal to noise ratio ($SNR{\geq}200$).

  • PDF

Analysis of Ultra Pure Sulfuric Acid for Semiconductor Using High Resolution ICP-MS (고분해능 ICP-MS를 이용한 반도체용 고순도 황산 분석)

  • Heo, Y.W.;GiI, J.I.;Lim, H.B.
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 1998
  • Ultra trace metal impurities of high-purity sulfuric acid for semiconductor process have been determined in the concentration of lower than ppb (ng/g) level using high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS).The acid samples were evaporated and concentrated by the factor of 20. No clement in the acids exceeded 1ppb level and most of the clements were determined below 10ppt (pg/g). Elements without spectral interference in mass spectrum, such as In, V, Mn, etc, were determined in the concentration of below 1 ppt level The recoveries in the range of 72% to 127.2% for 0.5 ppb spiked sample were obtained.

  • PDF

Image Restoration Filter for Preserving High Frequency Components in Impulse Noise Environments (임펄스 잡음 환경에서 고주파 성분을 보존하기 위한 영상 복원 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.394-400
    • /
    • 2019
  • Noise removal is one of the required step in processing digital video and there are many researches to develop algorithm that fits with its purpose and environment. However, present impulse noise removal methods are lacking in its function in terms of removing noise in edge and high frequency factors. Therefore, this research has Extended range of masks depending on density to determine noise so that high frequency factors can be preserved. The range of resolution is set based on median and standard deviation of inside resolution after removing impulse noise. afterwards, those resolution within the range are calculated by adding weight to have the final output value. The suggested algorithm has an enhanced function in removing noise in various areas with many edge and high frequency factors than present methods and their functions are compared through simulation.

LOW RESOLUTION RAINFALL ESTIMATIONS FROM PASSIVE MICROWAVE RADIOMETERS

  • Shin, Dong-Bin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.378-381
    • /
    • 2007
  • Analyses of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer (TMI) and precipitation radar (PR) data show that the rainfall inhomogeneity, represented by the coefficient of variation, decreases as rain rate increases at the low resolution (the footprint size of TMI 10 GHz channel). The rainfall inhomogeneity, however, is relatively constant for all rain rates at the high resolution (the footprint size of TMI 37 GHz channel). Consequently, radiometric signatures at lower spatial resolutions are characterized by larger dynamic range and smaller variability than those at higher spatial resolution. Based on the observed characteristics, this study develops a low-resolution (${\sim}40{\times}40$ km) rainfall retrieval algorithm utilizing realistic rainfall distributions in the a-priori databases. The purpose of the low-resolution rainfall algorithm is to make more reliable climatological rainfalls from various microwave sensors, including low-resolution radiometers.

  • PDF

High-resolution Transmission Electron Microscopy of Ordered Structure for Lead Magnesium Niobate Solid Solutions ($Pb(Mg_{1/3}Nb_{2/3})O_3$ 고용체에서 고분해능 투과전자현미경을 이용한 구조 규칙화에 대한 연구)

  • Park, Kyeong-Soon
    • Applied Microscopy
    • /
    • v.27 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • The nonstoichiometric ordering of Mg and Nb cations in undoped and La-doped lead magnesium niobate solid solutions has been investigated by means of high-resolution transmission electron microscopy and computer image simulation. High-resolution lattice images were obtained under various microscope imaging conditions and objective apertures. Computer image simulations were performed for a wide range of sample thickness, defocusing value, and long-range order parameter. The simulated images revealed that the lattice images of the ordered regions were predominantly dependent on the long-range order parameter. From the comparisons of the experimental and simulated images for the ordered regions, the long-range order parameter approximately ranged 0.2 to 0 7. It was also found that the ordered structure has a $(NH_4)_3-FeF_6$ structure, which consists of alternating Mg- and Nb-preferred sublattices along the (111) directions.

  • PDF

Super Resolution Reconstruction from Multiple Exposure Images (노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원)

  • Lee, Tae-Hyoung;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • Recent research efforts have focused on combining high dynamic range imaging with super-resolution reconstruction to enhance both the intensity range and resolution of images. The processes developed to date start with a set of multiple-exposure input images with low dynamic range (LDR) and low resolution (LR), and require several procedural steps: conversion from LDR to HDR, SR reconstruction, and tone mapping. Input images captured with irregular exposure steps have an impact on the quality of the output images from this process. In this paper, we present a simplified framework to replace the separate procedures of previous methods that is also robust to different sets of input images. The proposed method first calculates weight maps to determine the best visible parts of the input images. The weight maps are then applied directly to SR reconstruction, and the best visible parts for the dark and highlighted areas of each input image are preserved without LDR-to-HDR conversion, resulting in high dynamic range. A new luminance control factor (LCF) is used during SR reconstruction to adjust the luminance of input images captured during irregular exposure steps and ensure acceptable luminance of the resulting output images. Experimental results show that the proposed method produces SR images of HDR quality with luminance compensation.

Applications of Stochastic Process in the Quadrupole Ion traps

  • Chaharborj, Sarkhosh Seddighi;Kiai, Seyyed Mahmod Sadat;Arifina, Norihan Md;Gheisari, Yousof
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • The Brownian motion or Wiener process, as the physical model of the stochastic procedure, is observed as an indexed collection random variables. Stochastic procedure are quite influential on the confinement potential fluctuation in the quadrupole ion trap (QIT). Such effect is investigated for a high fractional mass resolution Δm/m spectrometry. A stochastic procedure like the Wiener or Brownian processes are potentially used in quadrupole ion traps (QIT). Issue examined are the stability diagrams for noise coefficient, η=0.07;0.14;0.28 as well as ion trajectories in real time for noise coefficient, η=0.14. The simulated results have been obtained with a high precision for the resolution of trapped ions. Furthermore, in the lower mass range, the impulse voltage including the stochastic potential can be considered quite suitable for the quadrupole ion trap with a higher mass resolution.

FMCW RADAR SIGNAL PROCESS USING REAL FFT (Real FFT를 이용한 FMCW 레이더 신호처리)

  • Kim, Min-Joon;Cheon, I-Hwan;Kim, Ju-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2227-2232
    • /
    • 2007
  • In this paper, it is presented a Real FFT for the FMCW radar distance measurement with high resolution. The high distance resolution needs the measurement of the accurate beat frequency. To improve the distance resolution, zoom fft, decimation, digital low pass filter and zero padding method are used. The simulation results using the Matlab show ${\pm}5mm$ of distance resolution and the measuring range is up to 35meter.

Comparative Analysis According to Acquisition Type by Using the Resolution Phantom for Mammography Equipment (유방촬영의 영상획득 방법에 따른 해상력 차트의 비교 분석)

  • Kim, Jae-Hoon;Ji, Yun-Sang;Dong, Kyung-Rae;Kwak, Jong-Gil
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.287-290
    • /
    • 2018
  • Nowadays, diseases related with breast are increasing rapidly and because of this high quality of resolution images is required to get clear detail specially for early detection and diagnosis. It has a tendency to use digital equipments than analog one in clinic. In this experiment, DR, CR, and Film are used for the resolution applied by AEC. Resolution phantom in DR was $7LP{\cdot}mm^{-1}$ in both verticality and horizontality. In CR, however, it was $6LP{\cdot}mm^{-1}$ in both which was lower this standard. The resolution stayed in range of standard in Film but it showed differences between $11{\sim}14LP{\cdot}mm^{-1}$ Overall, the difference of resolution was displayed Film, DR and CR, in order, which means the study is needed for more high quality of digital images.

Optimum Frequency Analysis for Sonar Transmit Signal design (소나 송신신호 설계를 위한 최적 주파수 분석)

  • Kim, Sunho;Jung, Jangwon;On, Baeksan;Im, Sungbin;Seo, Iksoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.47-54
    • /
    • 2016
  • In the underwater environment, high resolution can be achieved in the range direction by transmitting and receiving a signal of a particular band and/or waveform. The design of a transmit signal used in the active sonar is very important in order to detect a cylindrical object within a short distance less than 1 km, which is the detection distance of this paper. Designing a transmit signal optimal to a sonar requires appropriate selection of its center frequency and bandwidth, which allows the maximum detection distance of a sonar. In this paper, in terms of maximizing echo excess and signal to noise ratio (SNR), optimum frequency analysis is carried out under various conditions of diverse parameters. In addition, the investigation focused on the determinating a bandwidth is also performed for the purpose of satisfying the performance requirement of range resolution and azimuth resolution.