• Title/Summary/Keyword: high pressure extraction process

Search Result 79, Processing Time 0.025 seconds

A Study on the Process Capability Analysis of MIM Product (금속분말 사출성형 제품의 공정능력분석에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Choi, Byung-Hui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

Dry Etching of $Al_2O_3$ Thin Film in Inductively Coupled Plasma

  • Xue, Yang;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.67-67
    • /
    • 2009
  • Due to the scaling down of the dielectrics thickness, the leakage currents arising from electron tunneling through the dielectrics has become the major technical barrier. Thus, much works has focused on the development of high k dielectrics in both cases of memories and CMOS fields. Among the high-k materials, $Al_2O_3$ considered as good candidate has been attracting much attentions, which own some good properties as high dielectric constant k value (~9), a high bandgap (~2eV) and elevated crystallization temperature, etc. Due to the easy control of ion energy and flux, low ownership and simple structure of the inductively coupled plasma (ICP), we chose it for high-density plasma in our study. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of BClxOy compound. In this study, the etch characteristic of ALD deposited $Al_2O_3$ thin film was investigated in $BCl_3/N_2$ plasma. The experiment were performed by comparing etch rates and selectivity of $Al_2O_3$ over $SiO_2$ as functions of the input plasma parameters such as gas mixing ratio, DC-bias voltage and RF power and process pressure. The maximum etch rate was obtained under 15 mTorr process perssure, 700 W RF power, $BCl_3$(6 sccm)/$N_2$(14 sccm) plasma, and the highest etch selectivity was 1.9. We used the x-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. The Auger electron spectroscopy (AES) was used for elemental analysis of etched surface.

  • PDF

Soybean-based Green Adhesive for Environment-friendly Furniture Material

  • Jeon, Ji-Soo;Lee, Jeong-Hun;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • Over the last decade, Sick Building Syndrome has become a significant social issue in Korea and many methods have been considered to maintain comfortable indoor air quality. To reduce toxic substances emitted from wood composite products, the source control is an efficient method through the reduction of formaldehyde content by using natural material-based adhesives for composite wood products production. Among alternative materials, soybean protein is considered an appropriate natural material to replace formaldehyde-based resin and many efforts have been made to produce new products, such as soap, shampoo, ink, resin, adhesive and textile through changing the chemical or physical properties of soybean. To process soybeans into these useful products, the beans are dehulled and the oil is removed by crushing at very high pressure or by solvent extraction. For use soybean as an adhesive, it is processed at temperatures below $70^{\circ}C$ to preserve the alkaline solubility of the proteins. In addition, soybean-based adhesive is undergone treatment process to improve mechanical properties using urea, urease inhibitor N-(n-butyl) thiophosphoric triamide and sodium dodecyl sulfate. The modified soybean-based adhesive exhibited sufficient mechanical properties to use as an adhesive for composite wood products. This paper is a review article to discuss the possibilities of soybean-based adhesive for environment-friendly furniture materials.

  • PDF

Improvement of hot work environment in the curing processes of a tire manufacturing company (타이어 제조공장 가류공정의 온열환경 개선에 관한 연구)

  • Lim, Jung-ho;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.

Improvement of Light Extraction Efficiency of GaN-Based Vertical LED with Microlens Structure

  • Kwon, Eunhee;Kang, Eun Kyu;Min, Jung Wook;Lee, Yong Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.221-221
    • /
    • 2013
  • Vertical LED (VLED) has been recognized as a way to obtain the high-power LED due to their advantages [1]. However, approximately 4% of the light generated from the active region is extracted, if the light extraction from side walls and back side is neglected because of Fresnel reflection (FR) and total internal reflection (TIR) [2,3]. In this study, the optical simulation of the VLED with the various microstructures was performed. Among them, the microlens having the diameter of 3 ${\mu}m$ and the height of 1.5 ${\mu}m$ shown the best result was chosen, and then, optimized microlens was formed on a GaN template using conventional semiconductor process. Various microstructures were proposed to improve the light extraction efficiency (LEE) of the VLED for the simulation. The LEE was simulated using LightTools based on a Monte Carlo ray tracing. The microstructures with hemisphere, cone, truncated and cylinder pattern having diameter of 3 ${\mu}m$ were employed on the top layer of the VLED respectively. The improvement of the LEE by using the microstructure is 87% for the hemisphere, 77% for the cone, 53% for the truncated, 21% for the cylinder, compared with the LEE of the flat surface at the reflectance of 85%. The LEE was increased by 88% at the height of 1.5 ${\mu}m$, compared with the LEE of the flat surface. We found that the microlens on the top layer is the most suitable for increasing the LEE. In order to apply the proposed microlens on n-GaN surface, we fabricated microlens on a GaN template. A photoresist array having hexagonal-closed packed microlens was fabricated on the GaN template. Then, optimization of etching the GaN template was performed using a dry etching process with ICP-RIE. The dry etching carried out using a gas mixture of Cl2 and Ar, each having a flow rate of 16 sccm and 10 sccm, respectively with RF power of 50 W, ICP power of 900 W and chamber pressure of 2 mTorr was the optimum etching condition as shown in Fig. 2(a).

  • PDF

Modeling of Extrusion for Pectin Extraction from Apple Pomace (사과박의 펙틴 추출을 위한 압출 공정 모형화)

  • Cho, Yong-Jin;Kim, Chong-Tai;Kim, Chul-Jin;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.1011-1016
    • /
    • 1999
  • This study was performed to search a physical method having high yield and quality and minimum environmental pollution for extraction of pectin from apple pomace. Based on the physical solubilization of plant cell wall under the condition of high temperature, pressure and shearing stress, apple pomace was treated by a corotating intermeshing type twin-screw extruder with the diameter-to-length ratio of 1/20. The specific mechanical energy of extruder was introduced as system parameter for extrusion process modeling and the shaft speed, feed rate and moisture content as process variables. The yield, average molecular weight and galacturonic acid content of water-soluble polysaccharides obtained by extrusion were, respectively, modeled with the linear functions of the system parameter which was of the form as a linear function of process variables. The specific mechanical energy increased with increase of shaft speed and with decrease of feed rate and moisture content. Out of process variables, moisture content had the greatest effect on specific mechanical energy. The yield increased with increase of specific mechanical energy while the average molecular weight and galacturonic acid content increased with its decrease. In aspects of yield and quality of pectin, the results from this study showed the possibility to replace a traditional acidic method with the extrusion treatment of this study.

  • PDF

Material Life Cycle Assessment of Extrusion Process of A7003 (A7003 알루미늄 합금 압출공정의 MLCA 산정기술)

  • Jo Huyng-ho;Cho Hoon;Kim Byung-min;Kim Young-jig
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.43-49
    • /
    • 2002
  • A7003 alloy has characteristics of their excellent weldability, high corrosion resistance and superior plastic working however the broadening of application for the alloy has been hampered by the lower extrudability associated by Mg content. For improvement of extrudability and enhanced recovery efficiency during Al scrap recyeling, it has been generally practiced to reduce Mg content in A7003 alloy. Therefore, it is necessary to investigate the influence of Mg content on mechanical strength and extrudability of A7003 alloy. For efficient material processing which has small amounts, life cycle assessment in material processing(MLCA) is evaluated. The quantitative analysis of energy requirements and $CO_2$ emission for production of A7003 extruded bar are estimated with different Mg content and billet pre-heating process (heating source by light oil or LPG). In particular, the estimation of energy requirements was performed within shipping and gating range (except the mining and extraction stages)to investigate the influence of the variables on energy requirements and $CO_2$ emission in detail. As Mg content increased, the flow stress and the extrusion pressure for A7003 alloy increased. It has been thought that an increment in extrusion pressure with increasing Mg content is caused by the solid solution hardening of Mg atoms in the matrix and increment in volume fraction of intermetallic compound, $Mg_2Si$. The extrudability and the tensile strength are equal to, or above that of conventional A 7003 alloy even the content of Mg varied from $1.1wt.\%\;to\;0.5wt.\%$ alloy. This means that minimizing the content of Mg in A7003 alloy can enhance recovery efficiency during Al scrap recycling. It can be quoted that rather than Mg content energy source for billet heating is a prime factor to determine the atmospheric $CO_2$ emission.

  • PDF

Effects of Perilla frutescens L. on anti-oxidant and anti-inflammation activity (자소엽 및 자소자의 염증조절 활성 비교)

  • Son, Hyeong-U;Heo, Jin-Chul;Seo, Myung-Sun;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.757-761
    • /
    • 2010
  • It is recognized that Perilla frutescens L. (PfL) are useful for various diseases, including allergic disorders. To evaluate whether the PfL extract have potential in alleviating oxidant and inflammatory process, some in vitro antioxidant assays and in vivo DNFB-induced atopic assay were investigated. Extracts of PfL have potent anti-oxidant activity by DPPH or FRAP assay. By treatment of high temperature / high pressure extraction process of PfL seed, the activity was increased. Using a mouse animal model, we found that PfL extract reduces ear thickness and epithelial thickening and infiltration of immune cells inhibition. Collectively, the present results suggest that PfL can be used as an antioxidant and/or anti-inflammatory biomaterial, that should be proved to evaluate on mechanistic study and development of functional food.

A Study on Leaching of Vanadium and Nickel from Incineration Ash of Heavy Oil Fly Ash (중유회 소각재로부터 바나듐, 니켈 침출에 관한 기초적 연구)

  • 유연태;김병규;박경호;홍성웅
    • Resources Recycling
    • /
    • v.4 no.3
    • /
    • pp.32-39
    • /
    • 1995
  • Thc purpose of this study is to develop the efficient process for recovering vanadium and nickel from the incineralionash of the oil fly ash. In this paper, the physical and chemical properties of the incineration ash was examined, and theleaching characteristics of the incineration ash were investigated by water leaching and sulEuric acid leaching tcsls. The incinerationash of oil fly ash was mainly consisted of oxldes such as V,09, V,O,, NaVO,, Ni,(VO,)Z, Fe,O,, CaSO,, SiO,.Thc waler leaching showed low extraction of metallic components, while the sulfunc acid lcaching with high temperahlreand pressure increased the extraction of vanadium and nickcl considerably. For instance, the exlraction rates of the metalllccomponents on the sulfuric acid leaching were 99% for V and 45% for Ni at 90$^{\circ}$C with pH 0.5 H,SO,, and were86% for V and 75% far Ni at ZOO"C(64 psi) with pH 1.0 H-SO,. with pH 1.0 H-SO,.

  • PDF